Research Article
BibTex RIS Cite

Investigation of the Use of Bacterial Hemoglobin Expressing Immobilized Escherichia coli Strain for Bioethanol Production from Malt Extract

Year 2023, , 631 - 639, 23.07.2023
https://doi.org/10.30910/turkjans.1092176

Abstract

It is important to investigate alternatives to existing raw materials, microorganisms and methods in bioethanol production. For this purpose, in the present study, the efficiency of ethanol producer Escherichia coli FBR5 and its Vitreoscilla hemoglobin (VHb) expressing version TS4 strains were investigated in bioethanol production by using malt extract (MEM) and maltose-glucose (MGM) media as fermentation media. In addition, the effect of alginate-mediated cell immobilization, known to have enhancement effect on the production of various microbial metabolites was evaluated for the bioethanol production of these bacteria. In the study, it was determined that in combination with VHb expression and immobilization enhanced ethanol production by E. coli TS4 strain (23.67 g L-1) by up to 58% in MEM medium compared to that of FBR5 strain in 72 hours. Thus, it was determined that VHb expression and cell immobilization is an effective strategies to increase bioethanol production from a source such as malt extract. In addition, it was seen that barley malt extract could be a potential alternative carbon source in bioethanol production. As a result, it was determined that immobilized cells of E. coli strain expressing bacterial hemoglobin could be a promising approach to increase ethanol production from barley malt extract.

References

  • Abanoz, K., Stark, B. C., ve Akbas, M. Y. 2012. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters in Applied Microbiology, 55 (6), 436–443.
  • Akbas, M. Y., Sar, T., ve Ozcelik, B. 2014. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli. Bioscience, Biotechnology and Biochemistry, 78 (4), 687–694.
  • Akbas, M., ve Sar, T. 2019. Investigation of Effective Immobilization Method for Ethanol Producing E. coli Strain. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15 (2), 217–220.
  • Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52 (2), 858–875.
  • Dien, B. S., Nichols, N. N., O’Bryan, P. J., ve Bothast, R. J. 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 84 (86), 181–196.
  • Durgun, T. 2008. Malt Ekstraktı Üretimi ve Değerlendirilmesi. Gıda, 33 (1), 43–51.
  • Durgun, T., ve Kılıç, O. 1978. Malt, Maltözütü ve Bira Üretiminde Teknoloji ve Bileşim İliişkileri. Gıda, 3 (4), 139–148.
  • Fernandes, M. C., Ferro, M. D., Paulino, A. F. C., Mendes, J. A. S., Gravitis, J., Evtuguin, D. V., ve Xavier, A. M. R. B. 2015. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresource Technology, 186, 309–315.
  • Ghorbani, F., Younesi, H., Esmaeili Sari, A., ve Najafpour, G. 2011. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy, 36 (2), 503–509.
  • Ivanova, V., Petrova, P., ve Hristov, J. 2011. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles. 3 (March), 289–299.
  • Kahraman, H., ve Erenler, S. O. 2012. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Applied Biochemistry and Microbiology, 48 (2), 188–193.
  • Kahraman, Hüseyin, Aytan, E., ve Kurt, A. G. 2011. Production of methionine γ-lyase in recombinant Citrobacter freundii bearing the hemoglobin gene. BMB Reports, 44 (9), 590–594.
  • Khosla, C., ve Bailey, J. E. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Letters to Nature, 331, 633–635.
  • Kosseva, M. R. 2011. Immobilization of Microbial Cells in Food Fermentation Processes. Food and Bioprocess Technology, 4 (6), 1089–1118.
  • Liu, F., Jian, J., Shen, X., Chung, A., Chen, J., ve Chen, G. Q. 2011. Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate. Bioresource Technology, 102 (17), 8123–8129.
  • Park, J. K., ve Chang, H. N. 2000. Microencapsulation of microbial cells. Biotechnology Advances, 18 (4), 303–319.
  • Ryu, S., ve Lee, K. 1997. Comparison of immobilization matrix for ethanol fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. In Journal of Microbiology and Biotechnology 7 (6), 438–440.
  • Salimi, E., Saragas, K., Taheri, M. E., Novakovic, J., Barampouti, E. M., Mai, S., Moustakas, K., Malamis, D., ve Loizidou, M. 2019. The Role of Enzyme Loading on Starch and Cellulose Hydrolysis of Food Waste. Waste and Biomass Valorization, 10 (12), 3753–3762.
  • Sanny, T., Arnaldos, M., Kunkel, S. A., Pagilla, K. R., ve Stark, B. C. 2010. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Applied Microbiology and Biotechnology, 88 (5), 1103–1112.
  • Sar, T., Stark, B. C., ve Yesilcimen Akbas, M. 2017. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered, 8 (2), 171–181.
  • Schormüller, J. (1974). Pflanzliche Lebensmittel. In Lehrbuch der Lebensmittelchemie (pp. 456-721). Springer, Berlin, Heidelberg.
  • Scully, S. M., ve Orlygsson, J. 2015. Recent advances in second generation ethanol production by thermophilic bacteria. Energies, 8 (1), 1–30.
  • Sumer, F., Stark, B. C., ve Yesilcimen Akbas, M. 2015. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environmental Technology (United Kingdom), 36 (18), 2319–2327.
  • Swain, M. R., Kar, S., Sahoo, A. K., ve Ray, R. C. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiological Research, 162 (2), 93–98.
  • Şar, T., ve Akbaş, M. Y. 2016. Biyoetanol Üretimi İ çin Gıda İş leme Atıklarının Asit Hidrolizi Acid Hydrolysis of Food Processing Wastes for Bioethanol Production. Akademik Gıda, 14 (1), 15–20.
  • Webster, D. A., ve Liu, C. Y. 1974. Reduced Nicotinamide Adenine Dinucleotide Cytochrome o Reductase Associated with Cytochrome o Purified from Vitreoscilla. Journal of Biological Chemistry, 249 (13), 4257–4260.
  • Woiciechowski, A. L., Nitsche, S., Pandey, A., ve Soccol, C. R. 2002. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: An economic study. Brazilian Archives of Biology and Technology, 45 (3), 393–400.
  • Xu, M., Rao, Z., Xu, H., Lan, C., Dou, W., Zhang, X., Xu, H., Jin, J., ve Xu, Z. 2011. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 163(6), 707–719.
  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., ve Faruq, G. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71 (October 2015), 475–501.
  • Zhang, W., Xie, H., He, Y., Feng, J., Gao, W., Gu, Y., Wang, S., ve Song, C. 2013. Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters, 343 (2), 127–134.

Bakteriyel Hemoglobin Eksprese Eden İmmobilize Escherichia coli Suşunun Malt Özütünden Biyoetanol Elde Etmede Kullanımının Araştırılması

Year 2023, , 631 - 639, 23.07.2023
https://doi.org/10.30910/turkjans.1092176

Abstract

Biyoetanol üretiminde mevcut hammaddelere, mikroorganizmalara ve yöntemlere alternatiflerin araştırılması önem gerekmektedir. Bu amaçla bu çalışma ile etanol üreticisi Escherichia coli FBR5 ve bu suşun Vitreoscilla hemoglobini (VHb) eksprese eden türevi olan TS4 suşlarının fermentasyon ortamı olarak malt özütü (MEM) ve maltoz-glukoz (MGM) besiyerlerinin kullanılması ile biyoetanol eldesinde etkinliği araştırılmıştır. Ayrıca çeşitli mikrobiyal metabolitlerin üretiminde verimi arttırdığı bilinen aljinat aracılı hücre immobilizasyonunun bu bakterilerin biyoetanol üretkenliklerine etkisi değerlendirilmiştir. VHb ekspresyonu ve immobilizasyonun birlikte kullanımının MEM besiyerinde 72 saat sonunda E. coli TS4 suşunun etanol üretimini (23.67 g L-1) FBR5 suşu ile elde edilenden %58’e varan oranlarda arttırdığı belirlenmiştir. Böylece VHb ekspresyonunun ve hücre immobilizasyonunun malt özütü gibi bir kaynaktan biyoetanol üretimini arttırmada etkin bir strateji olduğunu belirlenmiştir. Ayrıca, arpa malt özütünün biyoetanol üretiminde potansiyel alternatif bir karbon kaynağı olabileceği görülmüştür. Sonuç olarak bakteriyel hemoglobin eksprese eden E. coli suşunun immobilize formdaki hücrelerinin arpa malt özütünden etanol üretimini arttırmada ümit verici bir yaklaşım olabileceği belirlenmiştir.

References

  • Abanoz, K., Stark, B. C., ve Akbas, M. Y. 2012. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters in Applied Microbiology, 55 (6), 436–443.
  • Akbas, M. Y., Sar, T., ve Ozcelik, B. 2014. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli. Bioscience, Biotechnology and Biochemistry, 78 (4), 687–694.
  • Akbas, M., ve Sar, T. 2019. Investigation of Effective Immobilization Method for Ethanol Producing E. coli Strain. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15 (2), 217–220.
  • Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52 (2), 858–875.
  • Dien, B. S., Nichols, N. N., O’Bryan, P. J., ve Bothast, R. J. 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 84 (86), 181–196.
  • Durgun, T. 2008. Malt Ekstraktı Üretimi ve Değerlendirilmesi. Gıda, 33 (1), 43–51.
  • Durgun, T., ve Kılıç, O. 1978. Malt, Maltözütü ve Bira Üretiminde Teknoloji ve Bileşim İliişkileri. Gıda, 3 (4), 139–148.
  • Fernandes, M. C., Ferro, M. D., Paulino, A. F. C., Mendes, J. A. S., Gravitis, J., Evtuguin, D. V., ve Xavier, A. M. R. B. 2015. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresource Technology, 186, 309–315.
  • Ghorbani, F., Younesi, H., Esmaeili Sari, A., ve Najafpour, G. 2011. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy, 36 (2), 503–509.
  • Ivanova, V., Petrova, P., ve Hristov, J. 2011. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles. 3 (March), 289–299.
  • Kahraman, H., ve Erenler, S. O. 2012. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Applied Biochemistry and Microbiology, 48 (2), 188–193.
  • Kahraman, Hüseyin, Aytan, E., ve Kurt, A. G. 2011. Production of methionine γ-lyase in recombinant Citrobacter freundii bearing the hemoglobin gene. BMB Reports, 44 (9), 590–594.
  • Khosla, C., ve Bailey, J. E. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Letters to Nature, 331, 633–635.
  • Kosseva, M. R. 2011. Immobilization of Microbial Cells in Food Fermentation Processes. Food and Bioprocess Technology, 4 (6), 1089–1118.
  • Liu, F., Jian, J., Shen, X., Chung, A., Chen, J., ve Chen, G. Q. 2011. Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate. Bioresource Technology, 102 (17), 8123–8129.
  • Park, J. K., ve Chang, H. N. 2000. Microencapsulation of microbial cells. Biotechnology Advances, 18 (4), 303–319.
  • Ryu, S., ve Lee, K. 1997. Comparison of immobilization matrix for ethanol fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. In Journal of Microbiology and Biotechnology 7 (6), 438–440.
  • Salimi, E., Saragas, K., Taheri, M. E., Novakovic, J., Barampouti, E. M., Mai, S., Moustakas, K., Malamis, D., ve Loizidou, M. 2019. The Role of Enzyme Loading on Starch and Cellulose Hydrolysis of Food Waste. Waste and Biomass Valorization, 10 (12), 3753–3762.
  • Sanny, T., Arnaldos, M., Kunkel, S. A., Pagilla, K. R., ve Stark, B. C. 2010. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Applied Microbiology and Biotechnology, 88 (5), 1103–1112.
  • Sar, T., Stark, B. C., ve Yesilcimen Akbas, M. 2017. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered, 8 (2), 171–181.
  • Schormüller, J. (1974). Pflanzliche Lebensmittel. In Lehrbuch der Lebensmittelchemie (pp. 456-721). Springer, Berlin, Heidelberg.
  • Scully, S. M., ve Orlygsson, J. 2015. Recent advances in second generation ethanol production by thermophilic bacteria. Energies, 8 (1), 1–30.
  • Sumer, F., Stark, B. C., ve Yesilcimen Akbas, M. 2015. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environmental Technology (United Kingdom), 36 (18), 2319–2327.
  • Swain, M. R., Kar, S., Sahoo, A. K., ve Ray, R. C. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiological Research, 162 (2), 93–98.
  • Şar, T., ve Akbaş, M. Y. 2016. Biyoetanol Üretimi İ çin Gıda İş leme Atıklarının Asit Hidrolizi Acid Hydrolysis of Food Processing Wastes for Bioethanol Production. Akademik Gıda, 14 (1), 15–20.
  • Webster, D. A., ve Liu, C. Y. 1974. Reduced Nicotinamide Adenine Dinucleotide Cytochrome o Reductase Associated with Cytochrome o Purified from Vitreoscilla. Journal of Biological Chemistry, 249 (13), 4257–4260.
  • Woiciechowski, A. L., Nitsche, S., Pandey, A., ve Soccol, C. R. 2002. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: An economic study. Brazilian Archives of Biology and Technology, 45 (3), 393–400.
  • Xu, M., Rao, Z., Xu, H., Lan, C., Dou, W., Zhang, X., Xu, H., Jin, J., ve Xu, Z. 2011. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 163(6), 707–719.
  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., ve Faruq, G. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71 (October 2015), 475–501.
  • Zhang, W., Xie, H., He, Y., Feng, J., Gao, W., Gu, Y., Wang, S., ve Song, C. 2013. Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters, 343 (2), 127–134.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Plant Cell and Molecular Biology
Journal Section Research Article
Authors

Gamze Şeker 0000-0002-5868-9934

Meltem Yesilcimen Akbas 0000-0002-0021-9235

Early Pub Date July 24, 2023
Publication Date July 23, 2023
Submission Date March 23, 2022
Published in Issue Year 2023

Cite

APA Şeker, G., & Yesilcimen Akbas, M. (2023). Bakteriyel Hemoglobin Eksprese Eden İmmobilize Escherichia coli Suşunun Malt Özütünden Biyoetanol Elde Etmede Kullanımının Araştırılması. Turkish Journal of Agricultural and Natural Sciences, 10(3), 631-639. https://doi.org/10.30910/turkjans.1092176