Research Article
BibTex RIS Cite

Farklı Botanik Kaynaklı Arı Polenlerinin Element Analizi ile Değerlendirilmesi

Year 2022, , 1114 - 1122, 18.10.2022
https://doi.org/10.30910/turkjans.1101428

Abstract

Arı poleni, mineraller de dahil olmak üzere pek çok besin maddesi içermektedir. Elementler arı poleninde yer alan minör bileşenlerdendir ve polenin kalitesinin belirlenmesinde önemli parametrelerden biridir. Bir gıda takviyesi olarak, arı poleninin kalitesini ve güvenilirliğini belirlemek için, temel makro ve mikro elementlerin ve zararlı ağır metallerin konsantrasyonlarının saptanması gerekmektedir. Bu çalışmanın amacı, farklı botanik kaynaklardan elde edilen arı polenlerinin element içeriklerinin belirlenmesidir. Bu çalışmada, arı poleni örneklerinin botanik kökenlerini saptamak için melissopalinolojik analiz yapılmıştır. Daha sonra polen örneklerindeki 13 elementin konsantrasyonları, İndüktif Olarak Eşleştirilmiş Plazma Kütle Spektrometrisi (ICP-MS) ile ölçülmüştür. Örneklerde en yüksek konsantrasyonlu element potasyum (K)(8666.67-9623.33), ardından sırasıyla magnezyum (Mg) (808.33-673.33), sodyum (Na) (263.00-349.67), kalsiyum (Ca) (261.33-294), demir (Fe) (96.00-110), Zn (33.77-57.00), Manganez (Mn) (20.15-33.85), Bakır (Cu) (5.27-9.60), Nikel (Ni) (1.13-2.48), Krom (Cr) (1.95-2.20), Selenyum (Se) (0.72-1.03) ve Kobalt (Co) (0-008) mg kg-1 olarak bulunmuştur. Bu sonuçlarla arı polenlerinin tehlike oranı (THQ), tehlike indeksi (HI) ve önerilen günlük tüketim değerleri (RDA) hesaplanmıştır. THQ değerlerine bakıldığında arı poleni tüketiminin yetişkinler için güvenli olduğu belirlenmiştir. Ancak polen tüketimi çocuklar için uygun bulunmamıştır. Bu çalışma sonucunda, arı poleninin temel elementler olan K, Mg, Na, Ca, Se, Mn, Fe, Cr ve Cu açısından da iyi bir mineral kaynağı olabileceği sonucuna varılmıştır.

References

  • Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 19(2), 164.
  • Aldgini, H. M. M., Abdullah Al-Abbadi, A., Abu-Nameh, E. S. M., & Alghazeer, R. O. (2019, 2019/11/01/). Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi Journal of Biological Sciences, 26(7), 1418-1422. https://doi.org/https://doi.org/10.1016/j.sjbs.2019.03.005 .
  • Altunatmaz, S. S., Tarhan, D., Aksu, F., Barutçu, U. T. B., & Or, M. E. (2017). Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology, 37, 136-141.
  • Anke, M., Angelow, L., Glei, M., Müller, M., & Illing, H. (1995, 1995/01/01). The biological importance of nickel in the food chain. Fresenius' Journal of Analytical Chemistry, 352(1), 92-96. https://doi.org/10.1007/BF00322304
  • Asmae, E. G., Nawal, E. M., Bakour, M., & Lyoussi, B. (2021). Moroccan Monofloral Bee Pollen: Botanical Origin, Physicochemical Characterization, and Antioxidant Activities. Journal of Food Quality, 2021.
  • Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in health and disease. Interrelations between essential metal ions and human diseases, 199-227.
  • Bakchiche, B., Temizer, İ. K., Güder, A., Çelemli, Ö. G., Yegin, S. Ç., Bardaweel, S. K., & Ghareeb, M. A. (2020). Chemical Composition and Biological Activities of Honeybee Products From Algeria. Journal of Applied Biotechnology Reports, 7(2), 93-103. https://doi.org/10.30491/jabr.2020.109498
  • Bonvehí, J. S., & Jorda, R. E. (1997). Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. Journal of Agricultural and Food Chemistry, 45(3), 725-732.
  • Carpes, S. T., Mourão, G. B., De Alencar, S. M., & Masson, M. L. (2009). Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Brazilian Journal of Food Technology, 12(1/4), 220-229.
  • Czarnek, K., Terpiłowska, S., & Siwicki, A. K. (2015). Selected aspects of the action of cobalt ions in the human body. Central-European journal of immunology, 40(2), 236.
  • Damastuti, E., Syahfitri, W. Y. N., Santoso, M., & Lestiani, D. D. (2012). Assessment of trace element daily intake based on consumption rate of foodstuffs in Bandung City. Atom Indonesia, 38(1), 29-34.
  • Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303-4309. https://doi.org/https://doi.org/10.1002/jsfa.7729
  • De-Melo, A. A. M., Estevinho, M. L. M. F., Sattler, J. A. G., Souza, B. R., da Silva Freitas, A., Barth, O. M., & Almeida-Muradian, L. B. (2016). Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. LWT-Food Science and Technology, 65, 808-815.
  • Dinkov, D., & Stratev, D. (2016). The content of two toxic heavy metals in Bulgarian bee pollen. International Food Research Journal, 23(3), 1343.
  • Freitas, A., de Arruda, V. A. S., de Almeida-Muradian, L. B., & Barth, O. M. (2013). The botanical profiles of dried bee pollen loads collected by Apis mellifera (Linnaeus) in Brazil. Sociobiology, 60(1), 56-64.
  • Foulquier, F., & Legrand, D. (2020). Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1864(10), 129674.
  • Grzeszczak, K., Kwiatkowski, S., & Kosik-Bogacka, D. (2020). The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 10(8), 1176.
  • Harmanescu, M., Bordean, D., & Gergen, I. (2007). Heavy metals content of bee’s pollen from different locations of Romania. Lucrari Stiintifice: Medicina Veterinara, 40, 253-260.
  • Harmanescu, M., Popovici, D., & Gergen, I. (2007). Mineral micronutrients composition of bee’s pollen. Journal of Agroalimentary Processes and Technologies, 13(1), 175-182.
  • Kalaycıoğlu, Z., Kaygusuz, H., Döker, S., Kolaylı, S., & Erim, F. B. (2017). Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT, 84, 402-408.
  • Kastrati, G., Paçarizi, M., Sopaj, F., Tašev, K., Stafilov, T., & Mustafa, M. K. (2021). Investigation of Concentration and Distribution of Elements in Three Environmental Compartments in the Region of Mitrovica, Kosovo: Soil, Honey and Bee Pollen. International Journal of Environmental Research and Public Health, 18(5), 2269. https://www.mdpi.com/1660-4601/18/5/2269
  • Kostić, A. Ž., Kaluđerović, L. M., Dojčinović, B. P., Barać, M. B., Babić, V. B., & Mačukanović-Jocić, M. P. (2017). Preliminary investigation of mineral content of pollen collected from different Serbian maize hybrids – is there any potential nutritional value? Journal of the Science of Food and Agriculture, 97(9), 2803-2809. https://doi.org/https://doi.org/10.1002/jsfa.8108
  • Mărgăoan, R., Mărghitaş, L. A., Dezmirean, D. S., Dulf, F. V., Bunea, A., Socaci, S. A., & Bobiş, O. (2014, 2014/07/09). Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. Journal of Agricultural and Food Chemistry, 62(27), 6306-6316. https://doi.org/10.1021/jf5020318
  • Mayda, N., Özkök, A., Ecem Bayram, N., Gerçek, Y. C., & Sorkun, K. (2020, 2020/08/01). Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement and Characterization, 14(4), 1795-1809. https://doi.org/10.1007/s11694-020-00427-y
  • Morgano, M. A., Teixeira Martins, M. C., Rabonato, L. C., Milani, R. F., Yotsuyanagi, K., & Rodriguez-Amaya, D. B. (2010, 2010/06/09). Inorganic Contaminants in Bee Pollen from Southeastern Brazil. Journal of Agricultural and Food Chemistry, 58(11), 6876-6883. https://doi.org/10.1021/jf100433p
  • Morgano, M. A., Martins, M. C. T., Rabonato, L. C., Milani, R. F., Yotsuyanagi, K., & Rodriguez-Amaya, D. B. (2012). A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. Journal of the Brazilian Chemical Society, 23(4), 727-736.
  • Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233-239.
  • Pohl, P., Dzimitrowicz, A., Lesniewicz, A., Welna, M., Szymczycha-Madeja, A., Cyganowski, P., & Jamroz, P. (2020). Room temperature solvent extraction for simple and fast determination of total concentration of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen by FAAS along with assessment of the bioaccessible fraction of these elements using in vitro gastrointestinal digestion. Journal of Trace Elements in Medicine and Biology, 60, 126479.
  • Pohl, P., Dzimitrowicz, A., Greda, K., Jamroz, P., Lesniewicz, A., Szymczycha-Madeja, A., & Welna, M. (2020). Element analysis of bee-collected pollen and bee bread by atomic and mass spectrometry–methodological development in addition to environmental and nutritional aspects. TRAC Trends in Analytical Chemistry, 115922.
  • Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., & Lucini, L. (2019). UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science & Technology, 54(2), 335-346. https://doi.org/https://doi.org/10.1111/ijfs.13941
  • Stanciu, O. G., Marghitas, L. A., Dezmirean, D., & Campos, M. G. (2012). Specific distribution of minerals in selected unifloral bee pollen. Food Science and Technology Letters, 3(1), 27. Taha, E. K. A. (2015). Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. Journal of Apicultural Science, 59(1), 75-81.
  • Taha, E. K. A., & Al-Kahtani, S. (2020). Macro-and trace elements content in honeybee pollen loads in relation to the harvest season. Saudi journal of biological sciences, 27(7), 1797-1800.
  • Thakur, M., & Nanda, V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science & Technology, 98, 82-106.
  • Temizer, İ. K., Güder, A., Temel, F. A., & Esin, A. (2018). A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environmental monitoring and assessment, 190(8), 462.
  • Tutun, H., Aluç, Y., Kahraman, H. A., Sevin, S., Yipel, M., & Ekici, H. (2022). The content and health risk assessment of selected elements in bee pollen and propolis from Turkey. Journal of Food Composition and Analysis, 105, 104234.
  • Velásquez, P., Rodriguez, K., Retamal, M., Giordano Villatoro, A., Valenzuela Roediger, L. M., & Montenegro Rizzardini, G. (2017). Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen.
  • Wodehouse, R. P. (1935). Pollen grains. McGraw-Hill Book Company.
  • Zafeiraki, E., Kasiotis, K. M., Nisianakis, P., Manea-Karga, E., & Machera, K. (2022). Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food and Chemical Toxicology, 112826.

Evaluation of bee pollen from different botanical sources with elemental analysis

Year 2022, , 1114 - 1122, 18.10.2022
https://doi.org/10.30910/turkjans.1101428

Abstract

Bee pollen contains many nutrients, including minerals. Elements are minor substances of bee pollen, they play a crucial role in identifying its quality. As a food supplement, concentrations of essential macro and microelements, and harmful trace elements have to be verified to determine its quality and safety. This study aimed to identify the element contents of bee pollens from different botanic sources. Firstly, we applied melissopalynological analysis to find the botanical origins of bee pollen samples. Then, it was determined the concentrations of 13 elements in the samples. Element concentration was measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Potassium (K) occurred at the highest concentrations in samples (8666.67-9623.33), followed by magnesium (Mg) (808.08-672.08), sodium (Na) (263.00-349.67), calcium (Ca) (261.33-294), iron (Fe) (96.00-110), Zn (33.77-57.00), Manganese (Mn) (20.15-33.85), Copper (Cu) (5.27-9.60), Nickel (Ni) (1.13-2.48), Chromium (Cr) (1.95-2.20), Selenium (Se) (0.72-1.03) and Cobalt (Co) (0-008) respectively as mg kg-1. Target hazard quotients (THQ), hazard index (HI), and recommended daily allowance (RDA) values were calculated with these results. Considering the THQ values, it was determined that the consumption of bee pollen was safe for adults, but not suitable for consumption by children. At the same time it was concluded from this study that bee pollen can be a good mineral source in terms of essential elements, K, Mg, Se, Mn, Na, Ca, Fe, Cu., and Cr

References

  • Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 19(2), 164.
  • Aldgini, H. M. M., Abdullah Al-Abbadi, A., Abu-Nameh, E. S. M., & Alghazeer, R. O. (2019, 2019/11/01/). Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi Journal of Biological Sciences, 26(7), 1418-1422. https://doi.org/https://doi.org/10.1016/j.sjbs.2019.03.005 .
  • Altunatmaz, S. S., Tarhan, D., Aksu, F., Barutçu, U. T. B., & Or, M. E. (2017). Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology, 37, 136-141.
  • Anke, M., Angelow, L., Glei, M., Müller, M., & Illing, H. (1995, 1995/01/01). The biological importance of nickel in the food chain. Fresenius' Journal of Analytical Chemistry, 352(1), 92-96. https://doi.org/10.1007/BF00322304
  • Asmae, E. G., Nawal, E. M., Bakour, M., & Lyoussi, B. (2021). Moroccan Monofloral Bee Pollen: Botanical Origin, Physicochemical Characterization, and Antioxidant Activities. Journal of Food Quality, 2021.
  • Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in health and disease. Interrelations between essential metal ions and human diseases, 199-227.
  • Bakchiche, B., Temizer, İ. K., Güder, A., Çelemli, Ö. G., Yegin, S. Ç., Bardaweel, S. K., & Ghareeb, M. A. (2020). Chemical Composition and Biological Activities of Honeybee Products From Algeria. Journal of Applied Biotechnology Reports, 7(2), 93-103. https://doi.org/10.30491/jabr.2020.109498
  • Bonvehí, J. S., & Jorda, R. E. (1997). Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. Journal of Agricultural and Food Chemistry, 45(3), 725-732.
  • Carpes, S. T., Mourão, G. B., De Alencar, S. M., & Masson, M. L. (2009). Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Brazilian Journal of Food Technology, 12(1/4), 220-229.
  • Czarnek, K., Terpiłowska, S., & Siwicki, A. K. (2015). Selected aspects of the action of cobalt ions in the human body. Central-European journal of immunology, 40(2), 236.
  • Damastuti, E., Syahfitri, W. Y. N., Santoso, M., & Lestiani, D. D. (2012). Assessment of trace element daily intake based on consumption rate of foodstuffs in Bandung City. Atom Indonesia, 38(1), 29-34.
  • Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303-4309. https://doi.org/https://doi.org/10.1002/jsfa.7729
  • De-Melo, A. A. M., Estevinho, M. L. M. F., Sattler, J. A. G., Souza, B. R., da Silva Freitas, A., Barth, O. M., & Almeida-Muradian, L. B. (2016). Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. LWT-Food Science and Technology, 65, 808-815.
  • Dinkov, D., & Stratev, D. (2016). The content of two toxic heavy metals in Bulgarian bee pollen. International Food Research Journal, 23(3), 1343.
  • Freitas, A., de Arruda, V. A. S., de Almeida-Muradian, L. B., & Barth, O. M. (2013). The botanical profiles of dried bee pollen loads collected by Apis mellifera (Linnaeus) in Brazil. Sociobiology, 60(1), 56-64.
  • Foulquier, F., & Legrand, D. (2020). Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1864(10), 129674.
  • Grzeszczak, K., Kwiatkowski, S., & Kosik-Bogacka, D. (2020). The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 10(8), 1176.
  • Harmanescu, M., Bordean, D., & Gergen, I. (2007). Heavy metals content of bee’s pollen from different locations of Romania. Lucrari Stiintifice: Medicina Veterinara, 40, 253-260.
  • Harmanescu, M., Popovici, D., & Gergen, I. (2007). Mineral micronutrients composition of bee’s pollen. Journal of Agroalimentary Processes and Technologies, 13(1), 175-182.
  • Kalaycıoğlu, Z., Kaygusuz, H., Döker, S., Kolaylı, S., & Erim, F. B. (2017). Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT, 84, 402-408.
  • Kastrati, G., Paçarizi, M., Sopaj, F., Tašev, K., Stafilov, T., & Mustafa, M. K. (2021). Investigation of Concentration and Distribution of Elements in Three Environmental Compartments in the Region of Mitrovica, Kosovo: Soil, Honey and Bee Pollen. International Journal of Environmental Research and Public Health, 18(5), 2269. https://www.mdpi.com/1660-4601/18/5/2269
  • Kostić, A. Ž., Kaluđerović, L. M., Dojčinović, B. P., Barać, M. B., Babić, V. B., & Mačukanović-Jocić, M. P. (2017). Preliminary investigation of mineral content of pollen collected from different Serbian maize hybrids – is there any potential nutritional value? Journal of the Science of Food and Agriculture, 97(9), 2803-2809. https://doi.org/https://doi.org/10.1002/jsfa.8108
  • Mărgăoan, R., Mărghitaş, L. A., Dezmirean, D. S., Dulf, F. V., Bunea, A., Socaci, S. A., & Bobiş, O. (2014, 2014/07/09). Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. Journal of Agricultural and Food Chemistry, 62(27), 6306-6316. https://doi.org/10.1021/jf5020318
  • Mayda, N., Özkök, A., Ecem Bayram, N., Gerçek, Y. C., & Sorkun, K. (2020, 2020/08/01). Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement and Characterization, 14(4), 1795-1809. https://doi.org/10.1007/s11694-020-00427-y
  • Morgano, M. A., Teixeira Martins, M. C., Rabonato, L. C., Milani, R. F., Yotsuyanagi, K., & Rodriguez-Amaya, D. B. (2010, 2010/06/09). Inorganic Contaminants in Bee Pollen from Southeastern Brazil. Journal of Agricultural and Food Chemistry, 58(11), 6876-6883. https://doi.org/10.1021/jf100433p
  • Morgano, M. A., Martins, M. C. T., Rabonato, L. C., Milani, R. F., Yotsuyanagi, K., & Rodriguez-Amaya, D. B. (2012). A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. Journal of the Brazilian Chemical Society, 23(4), 727-736.
  • Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233-239.
  • Pohl, P., Dzimitrowicz, A., Lesniewicz, A., Welna, M., Szymczycha-Madeja, A., Cyganowski, P., & Jamroz, P. (2020). Room temperature solvent extraction for simple and fast determination of total concentration of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen by FAAS along with assessment of the bioaccessible fraction of these elements using in vitro gastrointestinal digestion. Journal of Trace Elements in Medicine and Biology, 60, 126479.
  • Pohl, P., Dzimitrowicz, A., Greda, K., Jamroz, P., Lesniewicz, A., Szymczycha-Madeja, A., & Welna, M. (2020). Element analysis of bee-collected pollen and bee bread by atomic and mass spectrometry–methodological development in addition to environmental and nutritional aspects. TRAC Trends in Analytical Chemistry, 115922.
  • Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., & Lucini, L. (2019). UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science & Technology, 54(2), 335-346. https://doi.org/https://doi.org/10.1111/ijfs.13941
  • Stanciu, O. G., Marghitas, L. A., Dezmirean, D., & Campos, M. G. (2012). Specific distribution of minerals in selected unifloral bee pollen. Food Science and Technology Letters, 3(1), 27. Taha, E. K. A. (2015). Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. Journal of Apicultural Science, 59(1), 75-81.
  • Taha, E. K. A., & Al-Kahtani, S. (2020). Macro-and trace elements content in honeybee pollen loads in relation to the harvest season. Saudi journal of biological sciences, 27(7), 1797-1800.
  • Thakur, M., & Nanda, V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science & Technology, 98, 82-106.
  • Temizer, İ. K., Güder, A., Temel, F. A., & Esin, A. (2018). A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environmental monitoring and assessment, 190(8), 462.
  • Tutun, H., Aluç, Y., Kahraman, H. A., Sevin, S., Yipel, M., & Ekici, H. (2022). The content and health risk assessment of selected elements in bee pollen and propolis from Turkey. Journal of Food Composition and Analysis, 105, 104234.
  • Velásquez, P., Rodriguez, K., Retamal, M., Giordano Villatoro, A., Valenzuela Roediger, L. M., & Montenegro Rizzardini, G. (2017). Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen.
  • Wodehouse, R. P. (1935). Pollen grains. McGraw-Hill Book Company.
  • Zafeiraki, E., Kasiotis, K. M., Nisianakis, P., Manea-Karga, E., & Machera, K. (2022). Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food and Chemical Toxicology, 112826.
There are 38 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

İlginç Kizilpinar Temizer 0000-0003-0425-5898

Duygu Nur Çobanoğlu 0000-0002-8583-8114

Publication Date October 18, 2022
Submission Date April 11, 2022
Published in Issue Year 2022

Cite

APA Kizilpinar Temizer, İ., & Çobanoğlu, D. N. (2022). Evaluation of bee pollen from different botanical sources with elemental analysis. Turkish Journal of Agricultural and Natural Sciences, 9(4), 1114-1122. https://doi.org/10.30910/turkjans.1101428