Research Article
BibTex RIS Cite

Silaj Katkı Maddelerinin Mısır Silajına Etkisinin Değerlendirilmesinde Laboratuar Ölçekli Farklı Silolama Yöntemlerinin Karşılaştırılması

Year 2022, , 705 - 713, 23.07.2022
https://doi.org/10.30910/turkjans.1107368

Abstract

Bu çalışmada, standart cam kavanozlarda (SGJ) ve vakumlu model polietilen torbalarda (VP, Rostock) bazı katkı maddeleri ile yapılan mısır silajlarının kimyasal, besinsel ve fermentatif değişimlerinin karşılaştırılması amaçlanmıştır. Muamele grupları kontrol (ilavesiz), arpa (öğütülmüş arpa ilaveli 20 ve 40 g kg-1), laktik asit bakterileri (LAB) ve LAB+enzim karışımı gruplardan oluşturulmuştur. Silaj pH'sı silolama yönteminden etkilenmemiş (P=0.974) ancak LAB ilavesi ile pH değerleri artmıştır (P=0.030). Silajların kuru madde (DM) içerikleri arpa ilavesi ile artmıştır (P=0.030). Silajların hemiselüloz (HEM) içeriği, ENZ aşılaması ile azalmıştır (P=0.017). Silajların toplam karbonhidrat (TC) ve metabolik enerji (ME) konsantrasyonları en yüksek 40 g kg-1 arpa grubunda bulunmuştur (P<0.01). Silajların Fleig skorları (FP) LAB inokülasyonu ile azalmıştır (P=0.016). Silajların ham yağ (EE), ADF, NDF ve ham selüloz (CC), toplam sindirilebilir besin maddeleri (TDN) ve fermentasyon parametreleri (laktik, asetik, propiyonik ve butirik asit) silolama yönteminden veya silaj katkı maddelerinden etkilenmemiştir (P>0.05). Bu sonuçlar, vakumla paketlenebilen polietilen torbaların, laboratuvar ölçekli silaj çalışmaları için sabit hacimli cam kavanozlara göre daha uygun, esnek ve daha az maliyetli bir alternatif olduğunu göstermiştir.

References

  • Akyıldız, A. 1986. Feed science and technology. Ankara University Agricultural Faculty publications. No: 974, Text Book No: 286, Ankara, 1986. 411p.
  • AOAC. 2019. Association of Official Analytical Chemist. Official methods of analysis of the AOAC International. 21st ed. Arlington.
  • Chandler, P. 1990. Energy prediction of feeds by forage testing explorer. Feedstuffs, Minneapolis, 62(36): 1-12.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
  • Gallo, A., Bertuzzi, T., Giuberti, G., Moschini, M., and Bruschi, S. 2016. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. Journal of Science and Food Agriculture, 96(2): 437-448.
  • Guyader, J., Baron, V., and Beauchemin, K. 2018. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy, 8(9): 164.
  • Hoedtke, S., and Zeyner, A. 2011. Comparative evaluation of laboratory‐scale silages using standard glass jar silages or vacuum‐packed model silages. Journal of Science Food Agriculture, 91(5): 841-849.
  • Johnson, H.E., Merry, R.J., Davies, D.R., Kell, D.B., Theodorou, M.K., and Griffith, G.W. 2005. Vacuum packing: a model system for laboratory scale silage fermentations. Journal of Applied Microbiology, 98(1): 106–113.
  • Jones, C.M., Heinrichs, A.J., Roth, G.W., and Ishler, V.A. 2004. From harvest to feed: understanding silage management. Publication no. 5M6/04acg4674, Pennsylvania State University, College of Agricultural Sciences, Agricultural Research and Cooperative Extension. College Station, PA.
  • Kaiser, H.E. 1960. The application of electronic computers to factor analysis. Education and Psychological Measurement, 20(1): 141-151.
  • Ke, W.C., Ding, W.R., Ding, L.M., Xu, D.M., and Zhang, P. 2018. Influences of malic acid isomers and their application levels on fermentation quality and biochemical characteristics of alfalfa silage. Animal Feed Science and Technology, 245: 1-9.
  • Kirchgessner, M., Schwarz, F.J., and Stangl, G.I. 1997. Growth performance of beef cattle fed corn silage‐based rations without Cu, Zn, Mn, Co and Se supplementation. Journal of Animal Physiology and Animal Nutrition, 78: 141-153.
  • Kleinschmit, D.H., and Kung, J.R. 2006. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science, 89(10): 3999-4004.
  • Konca, Y., Buyukkilic Beyzi, S., Paffetti, M.A.G., Ulger, I., and Sohel, M.M.H. 2018. Effects of easy soluble carbohydrate and bacterial inoculant supplementations on silage quality of frosted maize. Acta Animal Science, 40: 1-7.
  • Kung, L., and Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus Forage, 3(13): 1–5.
  • Larrigaudiere, C., Lentheric, I., Puy, J., and Pinto, E. 2004. Biochemical characterisation of core browning and brown heart disorders in pear by multivariate analysis. Postharvest Biology and Technology, 31(1): 29-39.
  • Lindgren, S., Axelssona, L.T., and Mcfeeter, R.F. 1990. Anaerobic-lactate degradation by 328 Lactobacillus plantarum. FEMS Microbiological Letters, 66(1-3): 209-213.
  • Muck, R.E., and Holmes, B.J. 2000. Factors affecting bunker silo densities. Applied Engineering Agriculture, 16(6): 613–619.
  • Oliveira, R.L., Ribeiro, O.L., Bagaldo, A.R., Borja, M.S., and Correia, B.R. 2018. Nutritional composition and fermentative characteristics of Massai grass silage added with licuri (Syagrus coronata) cake. Semina: Ciências Agrárias, 39: 1189-1198.
  • Pauly, T., and Hjelm, H. 2015. Effect of acid-based additives and air stress on composition and aerobic stability of crimped maize grain ensiled in lab-scale silos. 6th Nordic Feed Science Conference, Uppsala, 77-81.
  • Robinson P. H., and Swanepoel, N. 2016. Impacts of a polyethylene silage pile underlay plastic with or without enhanced oxygen barrier (EOB) characteristics on preservation of whole crop maize silage, as well as a short investigation of peripheral deterioration on exposed silage faces. Animal Feed Science and Technology, 215: 13-24.
  • Saricicek, B.Z., Yildirim, B., Kocabas, Z., and Demir, E.O. 2016. Effect of storage time on nutrient composition and quality parameters of corn Silage. Turkish Journal of Agriculture and Food Science Technology, 4(11): 934-939.
  • Sniffen, C.J., O'connor, J.D., Van Soest, P.J., Fox, D.G., and Russell, J.B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11): 3562-3577.
  • SPSS. 2017. Statistics for Windows, Version 25.0. Chicago, IL: SPSS Inc.
  • Van Soest, P.J., Robertson, J.B., and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Animal Science, 74(10): 3583-3597.
  • Weatherly, M., Pate, R.T., Hedges, L.B., Mideros, S., and Fellows, G.M. 2018. Effects of foliar fungicide and ensiling time on dry matter and in vitro digestibility of brown midrib and floury corn silage varieties. Journal of Animal Science, 96(2): 238-238.
  • Weinberg, Z.G., Khanal, P., Yildiz, C., Chen, Y., and Arieli, A. 2010. Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages. Animal Feed Science and Technology, 158(1-2): 29-35.
  • Weiss, W.P., Conrad, H.R., and Pierre, N.R.S. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology, 39(1-2): 95-110.
  • Yang, Y., Ferreira, G., Corl, B.A., and Campbell, B.T. 2019. Production performance, nutrient digestibility, and milk fatty acid profile of lactating dairy cows fed corn silage-or sorghum silage-based diets with and without xylanase supplementation. Journal of Dairy Science, 102(3): 2266-2274.

Comparison of Different Laboratory-Scale Ensiling Methods for Evaluating the Influence of Silage Additives on Maize Silage

Year 2022, , 705 - 713, 23.07.2022
https://doi.org/10.30910/turkjans.1107368

Abstract

The current study aimed to compare the nutritional, chemical, and fermentative changes of maize silages with some additives prepared in standard glass jars (SGJ) and vacuum-packed model polyethylene bags (VP, Rostock). The treatment groups were control group (no addition), barley group (grinded barley addition 20 and 40 g kg-1), lactic acid bacteria (LAB) group, and LAB+enzyme mixture group. The ensiling method had no effect on the pH of the silage. (P=0.974) but the pH was increased with LAB addition (P=0.030). The dry matter (DM) contents of silages were increased by barley addition (P=0.030). Silages hemicellulose (HEM) content was decreased by ENZ inoculation (P=0.017). Silages total carbohydrates (TC) and metabolizable energy (ME) concentrations were highest in 40 g kg-1 barley group (P<0.01). The silages fleig point (FP) was decreased by LAB inoculation (P=0.016). Silage ether extract (EE), ADF, NDF and crude cellulose (CC), total digestible nutrients (TDN), and fermentation parameters (acetic, butyric, lactic and propionic acids) were not impacted by the ensiling methods or silage additives (P>0.05). These results showed that vacuum-packed polythene bags do provide practical, flexible, and cost-efficient alternative to fixed-capacity glass containers for laboratory scale silage experiments.

Thanks

The author would like to thank to Yusuf KONCA, Selma BÜYÜKKILIÇ BEYZİ and İsmail ÜLGER for their help in making use of laboratory facilities and support in the composition of the manuscript and Gül PARA for helps to analysing the silage samples.

References

  • Akyıldız, A. 1986. Feed science and technology. Ankara University Agricultural Faculty publications. No: 974, Text Book No: 286, Ankara, 1986. 411p.
  • AOAC. 2019. Association of Official Analytical Chemist. Official methods of analysis of the AOAC International. 21st ed. Arlington.
  • Chandler, P. 1990. Energy prediction of feeds by forage testing explorer. Feedstuffs, Minneapolis, 62(36): 1-12.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
  • Gallo, A., Bertuzzi, T., Giuberti, G., Moschini, M., and Bruschi, S. 2016. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. Journal of Science and Food Agriculture, 96(2): 437-448.
  • Guyader, J., Baron, V., and Beauchemin, K. 2018. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy, 8(9): 164.
  • Hoedtke, S., and Zeyner, A. 2011. Comparative evaluation of laboratory‐scale silages using standard glass jar silages or vacuum‐packed model silages. Journal of Science Food Agriculture, 91(5): 841-849.
  • Johnson, H.E., Merry, R.J., Davies, D.R., Kell, D.B., Theodorou, M.K., and Griffith, G.W. 2005. Vacuum packing: a model system for laboratory scale silage fermentations. Journal of Applied Microbiology, 98(1): 106–113.
  • Jones, C.M., Heinrichs, A.J., Roth, G.W., and Ishler, V.A. 2004. From harvest to feed: understanding silage management. Publication no. 5M6/04acg4674, Pennsylvania State University, College of Agricultural Sciences, Agricultural Research and Cooperative Extension. College Station, PA.
  • Kaiser, H.E. 1960. The application of electronic computers to factor analysis. Education and Psychological Measurement, 20(1): 141-151.
  • Ke, W.C., Ding, W.R., Ding, L.M., Xu, D.M., and Zhang, P. 2018. Influences of malic acid isomers and their application levels on fermentation quality and biochemical characteristics of alfalfa silage. Animal Feed Science and Technology, 245: 1-9.
  • Kirchgessner, M., Schwarz, F.J., and Stangl, G.I. 1997. Growth performance of beef cattle fed corn silage‐based rations without Cu, Zn, Mn, Co and Se supplementation. Journal of Animal Physiology and Animal Nutrition, 78: 141-153.
  • Kleinschmit, D.H., and Kung, J.R. 2006. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science, 89(10): 3999-4004.
  • Konca, Y., Buyukkilic Beyzi, S., Paffetti, M.A.G., Ulger, I., and Sohel, M.M.H. 2018. Effects of easy soluble carbohydrate and bacterial inoculant supplementations on silage quality of frosted maize. Acta Animal Science, 40: 1-7.
  • Kung, L., and Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus Forage, 3(13): 1–5.
  • Larrigaudiere, C., Lentheric, I., Puy, J., and Pinto, E. 2004. Biochemical characterisation of core browning and brown heart disorders in pear by multivariate analysis. Postharvest Biology and Technology, 31(1): 29-39.
  • Lindgren, S., Axelssona, L.T., and Mcfeeter, R.F. 1990. Anaerobic-lactate degradation by 328 Lactobacillus plantarum. FEMS Microbiological Letters, 66(1-3): 209-213.
  • Muck, R.E., and Holmes, B.J. 2000. Factors affecting bunker silo densities. Applied Engineering Agriculture, 16(6): 613–619.
  • Oliveira, R.L., Ribeiro, O.L., Bagaldo, A.R., Borja, M.S., and Correia, B.R. 2018. Nutritional composition and fermentative characteristics of Massai grass silage added with licuri (Syagrus coronata) cake. Semina: Ciências Agrárias, 39: 1189-1198.
  • Pauly, T., and Hjelm, H. 2015. Effect of acid-based additives and air stress on composition and aerobic stability of crimped maize grain ensiled in lab-scale silos. 6th Nordic Feed Science Conference, Uppsala, 77-81.
  • Robinson P. H., and Swanepoel, N. 2016. Impacts of a polyethylene silage pile underlay plastic with or without enhanced oxygen barrier (EOB) characteristics on preservation of whole crop maize silage, as well as a short investigation of peripheral deterioration on exposed silage faces. Animal Feed Science and Technology, 215: 13-24.
  • Saricicek, B.Z., Yildirim, B., Kocabas, Z., and Demir, E.O. 2016. Effect of storage time on nutrient composition and quality parameters of corn Silage. Turkish Journal of Agriculture and Food Science Technology, 4(11): 934-939.
  • Sniffen, C.J., O'connor, J.D., Van Soest, P.J., Fox, D.G., and Russell, J.B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11): 3562-3577.
  • SPSS. 2017. Statistics for Windows, Version 25.0. Chicago, IL: SPSS Inc.
  • Van Soest, P.J., Robertson, J.B., and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Animal Science, 74(10): 3583-3597.
  • Weatherly, M., Pate, R.T., Hedges, L.B., Mideros, S., and Fellows, G.M. 2018. Effects of foliar fungicide and ensiling time on dry matter and in vitro digestibility of brown midrib and floury corn silage varieties. Journal of Animal Science, 96(2): 238-238.
  • Weinberg, Z.G., Khanal, P., Yildiz, C., Chen, Y., and Arieli, A. 2010. Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages. Animal Feed Science and Technology, 158(1-2): 29-35.
  • Weiss, W.P., Conrad, H.R., and Pierre, N.R.S. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology, 39(1-2): 95-110.
  • Yang, Y., Ferreira, G., Corl, B.A., and Campbell, B.T. 2019. Production performance, nutrient digestibility, and milk fatty acid profile of lactating dairy cows fed corn silage-or sorghum silage-based diets with and without xylanase supplementation. Journal of Dairy Science, 102(3): 2266-2274.
There are 29 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Emrah Kaya 0000-0001-7337-0406

Publication Date July 23, 2022
Submission Date April 22, 2022
Published in Issue Year 2022

Cite

APA Kaya, E. (2022). Comparison of Different Laboratory-Scale Ensiling Methods for Evaluating the Influence of Silage Additives on Maize Silage. Türk Tarım Ve Doğa Bilimleri Dergisi, 9(3), 705-713. https://doi.org/10.30910/turkjans.1107368