Zebularin'in Antioksidan Enzimleri ve Galleria mellonella (Lepidoptera: Pyralidae) Lipit Peroksidasyonu Üzerindeki Etkisi
Year 2023,
, 457 - 464, 25.04.2023
Ebru Çakır
,
Fevzi Uçkan
,
Ekrem Ergin
,
Rabia Özbek
Abstract
Sitozin metilasyonu'daki sitozin kalıntısını 5-metilsitozine dönüştürmek için bir metil grubu ekleyen süreçtir. Metilasyon sürecine DNA metiltransferazları tarafından aracılık edilir. Zebularin (ZEB), ur ve kist tümör hücrelerinde hipermetile edilmiş genleri yeniden aktive eder, kanser hücreleri üzerinde tercihli bir etki gösteren DNA metiltransferazları ile kovalent bir kompleks oluşturan sitidin analoğudur. Bal mumu güvesi Galleria mellonella’da son evre larvalarına farklı dozlarda (0.25-32 mg / ml) verilen ZEB’in antioksidan enzim aktivitesi ve lipit peroksidasyonu üzerindeki etkileri incelendi. ZEB enjeksiyonu, son aşamada G. mellonella larvalarında CAT enzim aktivitesinde değil ama büyüklük sırasına göre SOD, MDA ve GST seviyesinde artışa neden oldu. Sonuçlar için iki olası sebep öngörülmektedir. Birincisi, ZEB’in, G. mellonella'da DNA metilasyonu üzerindeki engelleyici etkisinin bir sonucu olabilir, bu da böceklerde gen transkripsiyonunun azaltılmasına yol açabilmektedir. İkincisi, yüksek oksidatif stresin enzimlerin azalan aktivitesine neden olması muhtemeldir.
Supporting Institution
Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
2015-215Z079
References
- Ahmad, S., Zaman, K., MacGill, R. S., Batcabe, J. P., & Pardini, R. S. (1995). Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania. Archives of environmental contamination and toxicology, 29(4), 442-448.
- Altincicek, B., Linder, M., Linder, D., Preissner, K. T., & Vilcinskas, A. (2007). Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infection and immunity, 75(1), 175-183.
- Altuntaş, H. (2015). Determination of gibberellic acid (GA 3)-induced oxidative stress in a model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental entomology, 44(1), 100-105.
- Aperis, G., Fuchs, B. B., Anderson, C. A., Warner, J. E., Calderwood, S. B., & Mylonakis, E. (2007). Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes and infection, 9(6), 729-734.
- Büyükgüzel, E., Hyršl, P., & Büyükgüzel, K. (2010). Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(2), 176-183.
- Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2: 764-775.
- Cheng, J. C., Matsen, C. B., Gonzales, F. A., Ye, W., Greer, et al. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. Journal of the National Cancer Institute, 95(5), 399-409.
- Cnubben, N. H., Rietjens, I. M., Wortelboer, H., van Zanden, J., & van Bladeren, P. J. (2001). The interplay of glutathione-related processes in antioxidant defense. Environmental toxicology and pharmacology, 10(4), 141-152.
- Dalton, T. P., Shertzer, H. G., & Puga, A. (1999). Regulation of gene expression by reactive oxygen. Annual review of pharmacology and toxicology, 39(1), 67-101.
- Dubovskii, I. M., Olifirenko, O. A., & Glupov, V. V. (2005). Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. galleriae. Journal of Evolutionary Biochemistry and Physiology, 41(1), 20-25.
- James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of invertebrate pathology, 109(2), 175-182.
- Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature reviews genetics, 3(6), 415-428.
- Kaethner, M. (1992). Fitness reduction and mortality effects of neem‐based pesticides on the Colorado potato beetle Leptinotarsa decemlineata Say (Col., Chrysomelidae). Journal of Applied Entomology, 113(1‐5), 456-465.
- Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signalling. Cellular signalling, 11(1), 1-14.
- Kannan, K., & Jain, S. K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7(3), 153-163.
- Kavanagh, K., & Reeves, E. P. (2004). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS microbiology reviews, 28(1), 101-112.
- Keloğlan, R., Demirtürk, Z., & Uçkan, F. (2021) Regulative Influence of Propolis on Oxidative Stress and Hormonal Changes in Chronic Unpredictable Mild Stress-induced Depression Model of Rats. The Pharmaceutical and Chemical Journal, 8(2), 29-37.
- Kohen, R., & Nyska, A. (2002). Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology, 30(6), 620-650.
- Krishnan, N., Kodrík, D., Kłudkiewicz, B., & Sehnal, F. (2009). Glutathione–ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect biochemistry and molecular biology, 39(3), 180-188.
- Mano, J. I., Belles-Boix, E., Babiychuk, E., Inzé, D., Torii, Y., et al. (2005). Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant physiology, 139(4), 1773-1783.
- Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A., & Chakraborty, T. (2010). Galleria mellonella as a model system for studying Listeria pathogenesis. Applied and environmental microbiology, 76(1), 310-317.
- Özbek, R., Mukherjee, K., Uçkan, F., & Vilcinskas, A. (2020). Reprograming of epigenetic mechanisms controlling host insect immunity and development in response to egg-laying by a parasitoid wasp. Proceedings of the Royal Society B, 287(1928), 20200704.
- Özyılmaz, D., Özbek, R., Altuntaş, H., & Uçkan, F. (2019). Indole-3-acetic acid induced oxidative stress in model host Galleria mellonella L. (Lepidoptera: Pyralidae) and its endoparasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Invertebrate Survival Journal, doi.org/10.25431/1824-307X/isj.v0i0.184-188.
- Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). The Belgian Journal of Zoology, 136(1): 53-58.
- Sarkar, S., Rao, S. R. V., Gupta, V. S., & Hendre, R. R. (1992). 5-Methylcytosine content in Gryllotalpa fossor (Orthoptera). Genome, 35(1), 163-166.
- Seed, K. D., & Dennis, J. J. (2008). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infection and Immunity, 76(3), 1267-1275.
- Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nature reviews genetics, 9(6), 465-476.
- Tan, S., Wood, M., & Maher, P. (1998). Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. Journal of neurochemistry, 71(1), 95-105.
- Uçkan, F., Öztürk, Z., Altuntaş, H., & Ergin, E. (2011). Effects of gibberellic acid (GA3) on biological parameters and hemolymph metabolites of the pupal endoparasitoid Pimpla turionellae (Hymenoptera: Ichneumonidae) and its host Galleria mellonella (Lepidoptera: Pyralidae). Journal of the Entomological Research Society, 13(3), 1-14.
- Uçkan, F., Özbek, R., & Ergin, E. (2015). Effects of indol-3-acetic acid on the biology of Galleria mellonella (Lepidoptera: Pyralidae) and its endoparasitoid Pimpla turionellae Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 145(1), 49-58.
- Vogel, H., Altincicek, B., Glöckner, G., & Vilcinskas, A. (2011). A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC genomics, 12(1), 1-19.
- Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. The Journal of experimental medicine, 182(2), 367-377.
Influence of Zebularin on Antioxidant Enzymes and Lipid Peroxidation of Galleria mellonella (Lepidoptera: Pyralidae)
Year 2023,
, 457 - 464, 25.04.2023
Ebru Çakır
,
Fevzi Uçkan
,
Ekrem Ergin
,
Rabia Özbek
Abstract
Cytosine methylation is a process that adds a methyl group to a cytosine residue of DNA to convert it to 5-methylcytosine. Zebularine (ZEB) reactivates hypermethylated genes in yeast and solid tumor cells, with DNA methyltransferases that show a preferential effect on cancer cells. We investigated the effects of various doses (0.25-32 mg/ml) of ZEB, on antioxidant enzyme activity and lipid peroxidation in wax moth Galleria mellonella last instars. Injection of ZEB in last instars G. mellonella resulted in increases in SOD, MDA, and GST levels, in order of magnitude, but not in CAT enzyme activity. Two possible reasons were predicted for these results. This effect could be a result of the inhibitory effect of ZEB on DNA methylation in G. mellonella, which leaded to reducing gene transcription in insects. Or it was likely that high oxidative stress might cause a decreasing activity of enzymes.
Project Number
2015-215Z079
References
- Ahmad, S., Zaman, K., MacGill, R. S., Batcabe, J. P., & Pardini, R. S. (1995). Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania. Archives of environmental contamination and toxicology, 29(4), 442-448.
- Altincicek, B., Linder, M., Linder, D., Preissner, K. T., & Vilcinskas, A. (2007). Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infection and immunity, 75(1), 175-183.
- Altuntaş, H. (2015). Determination of gibberellic acid (GA 3)-induced oxidative stress in a model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental entomology, 44(1), 100-105.
- Aperis, G., Fuchs, B. B., Anderson, C. A., Warner, J. E., Calderwood, S. B., & Mylonakis, E. (2007). Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes and infection, 9(6), 729-734.
- Büyükgüzel, E., Hyršl, P., & Büyükgüzel, K. (2010). Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(2), 176-183.
- Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2: 764-775.
- Cheng, J. C., Matsen, C. B., Gonzales, F. A., Ye, W., Greer, et al. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. Journal of the National Cancer Institute, 95(5), 399-409.
- Cnubben, N. H., Rietjens, I. M., Wortelboer, H., van Zanden, J., & van Bladeren, P. J. (2001). The interplay of glutathione-related processes in antioxidant defense. Environmental toxicology and pharmacology, 10(4), 141-152.
- Dalton, T. P., Shertzer, H. G., & Puga, A. (1999). Regulation of gene expression by reactive oxygen. Annual review of pharmacology and toxicology, 39(1), 67-101.
- Dubovskii, I. M., Olifirenko, O. A., & Glupov, V. V. (2005). Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. galleriae. Journal of Evolutionary Biochemistry and Physiology, 41(1), 20-25.
- James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of invertebrate pathology, 109(2), 175-182.
- Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature reviews genetics, 3(6), 415-428.
- Kaethner, M. (1992). Fitness reduction and mortality effects of neem‐based pesticides on the Colorado potato beetle Leptinotarsa decemlineata Say (Col., Chrysomelidae). Journal of Applied Entomology, 113(1‐5), 456-465.
- Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signalling. Cellular signalling, 11(1), 1-14.
- Kannan, K., & Jain, S. K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7(3), 153-163.
- Kavanagh, K., & Reeves, E. P. (2004). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS microbiology reviews, 28(1), 101-112.
- Keloğlan, R., Demirtürk, Z., & Uçkan, F. (2021) Regulative Influence of Propolis on Oxidative Stress and Hormonal Changes in Chronic Unpredictable Mild Stress-induced Depression Model of Rats. The Pharmaceutical and Chemical Journal, 8(2), 29-37.
- Kohen, R., & Nyska, A. (2002). Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology, 30(6), 620-650.
- Krishnan, N., Kodrík, D., Kłudkiewicz, B., & Sehnal, F. (2009). Glutathione–ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect biochemistry and molecular biology, 39(3), 180-188.
- Mano, J. I., Belles-Boix, E., Babiychuk, E., Inzé, D., Torii, Y., et al. (2005). Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant physiology, 139(4), 1773-1783.
- Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A., & Chakraborty, T. (2010). Galleria mellonella as a model system for studying Listeria pathogenesis. Applied and environmental microbiology, 76(1), 310-317.
- Özbek, R., Mukherjee, K., Uçkan, F., & Vilcinskas, A. (2020). Reprograming of epigenetic mechanisms controlling host insect immunity and development in response to egg-laying by a parasitoid wasp. Proceedings of the Royal Society B, 287(1928), 20200704.
- Özyılmaz, D., Özbek, R., Altuntaş, H., & Uçkan, F. (2019). Indole-3-acetic acid induced oxidative stress in model host Galleria mellonella L. (Lepidoptera: Pyralidae) and its endoparasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Invertebrate Survival Journal, doi.org/10.25431/1824-307X/isj.v0i0.184-188.
- Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). The Belgian Journal of Zoology, 136(1): 53-58.
- Sarkar, S., Rao, S. R. V., Gupta, V. S., & Hendre, R. R. (1992). 5-Methylcytosine content in Gryllotalpa fossor (Orthoptera). Genome, 35(1), 163-166.
- Seed, K. D., & Dennis, J. J. (2008). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infection and Immunity, 76(3), 1267-1275.
- Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nature reviews genetics, 9(6), 465-476.
- Tan, S., Wood, M., & Maher, P. (1998). Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. Journal of neurochemistry, 71(1), 95-105.
- Uçkan, F., Öztürk, Z., Altuntaş, H., & Ergin, E. (2011). Effects of gibberellic acid (GA3) on biological parameters and hemolymph metabolites of the pupal endoparasitoid Pimpla turionellae (Hymenoptera: Ichneumonidae) and its host Galleria mellonella (Lepidoptera: Pyralidae). Journal of the Entomological Research Society, 13(3), 1-14.
- Uçkan, F., Özbek, R., & Ergin, E. (2015). Effects of indol-3-acetic acid on the biology of Galleria mellonella (Lepidoptera: Pyralidae) and its endoparasitoid Pimpla turionellae Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 145(1), 49-58.
- Vogel, H., Altincicek, B., Glöckner, G., & Vilcinskas, A. (2011). A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC genomics, 12(1), 1-19.
- Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. The Journal of experimental medicine, 182(2), 367-377.