Research Article
BibTex RIS Cite

Domateste Agrobacterium Aracılı Geçici Gen İfadesi için Vakum Destekli Düzenek Tasarımı

Year 2023, , 97 - 106, 28.01.2023
https://doi.org/10.30910/turkjans.1112981

Abstract

Hedef genleri bitkilere aktarmak için çeşitli yöntemler kullanılmaktadır. Bunlardan, Agrobacterium aracılı transformasyonda, bitkiye genler kalıcı olarak ikili vektör sistemi ile aktarılabilmektedir. Ancak bu yöntem ile transgenik bir bitki elde etmek için birkaç aylık bir zamana ihtiyaç duyulduğu düşünüldüğünde, süreç oldukça yoğun iş gücü, emek ve zaman gerektirmektedir. Geçici gen ekspresyonu (örn., vakum-infiltrasyon) sistemleri, özellikle zamanla ilgili dezavantajların üstesinden gelmek için, kalıcı transformasyona alternatif olarak kullanılabilmektedir. Ancak bu yöntemde, vakum odaları gibi pahalı ekipmanlara ihtiyaç duyulmaktadır. Bu çalışmada, domates fidelerinde bir raportör gen olan modifiye yeşil floresan proteinin (mGFP) geçici ifadesini gösteren bir vakum-infiltrasyon protokolü rapor edilmektedir. Çalışma sonucunda, uygun fiyatlı ekipmana sahip temel bir deney düzeneği (özel yapım bir büyüme odası dahil) ile 6 dakika boyunca ve sadece 200 milibarlık bir vakum uygulanarak tüm yaprağa ilgili geni taşıyan Agrobacterium solüsyonunun infiltre edilebileceği, böylece domateste geçici gen ifadesinin sağlanabileceği gösterilmiştir. Sonuç olarak, T-DNA, PCR ile tespit edilmiş, mGFP'nin varlığı hem SDS-page analizi ile analitik olarak hem de floresan mikroskobu ile görsel olarak belirlenmiştir.

References

  • Beihaghi, M., Marashi, H., Bagheri, A., Sankian, M. 2018. Transient expression of CCL21as recombinant protein in tomato. Biotechnology Reports, 17, 10–15.
  • Chetty, V. J., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W., Orozco-Cárdenas, M. L. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports, 32(2), 239–247.
  • Doyle, J., Doyle, J. 1990. Isolation of DNA from fresh tissue. Focus, 12(13), 13–15.
  • Haseloff, J., Siemering, K. R., Prasher, D. C., Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2122–2127.
  • Heidari-Japelaghi, R., Valizadeh, M., Haddad, R., Dorani-Uliaie, E., Jalali-Javaran, M. 2020. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expression and Purification, 173, 105616.
  • Hellens, R. P., Allan, A. C., Friel, E. N., Bolitho, K., Grafton, K., Templeton, M. D., Karunairetnam, S., Gleave A. P., Laing, W. A. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1(1), 13.
  • Hu, D., Bent, A. F., Hou, X., Li, Y. 2019. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 19(1), 246.
  • Khoeyi, Z. A., Seyfabadi, J., Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41–49.
  • Kimura, S., Sinha, N. 2008. Tomato (Solanum lycopersicum): A model fruit-bearing crop. Cold Spring Harbor Protocols, 3(11), pdb.emo105.
  • Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., Chen, Q. 2013. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. Journal of Visualized Experiments, (77).
  • Liu, P. F., Wang, Y., Ulrich, R. G., Simmons, C. W., Vandergheynst, J. S., Gallo, R. L., Huang, C. M. 2018. Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves. Journal of Immunology Research, 2018.
  • Mamedov, T., Cicek, K., Gulec, B., Ungor, R., Hasanova, G. 2017. In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus. PLoS ONE, 12(8), e0183589.
  • Mardanova, E. S., Blokhina, E. A., Tsybalova, L. M., Peyret, H., Lomonossoff, G. P Ravin, N. V. 2017. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X. Frontiers in Plant Science, 8, 247.
  • Mariashibu, T. S., Subramanyam, K., Arun, M., Mayavan, S., Rajesh, M., Theboral, J., Manickavasagam, M., Ganapathi, A. 2013. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiologiae Plantarum, 35(1), 41–54.
  • Norkunas, K., Harding, R., Dale, J., Dugdale, B. 2018. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods, 14(1), 71. Piscitelli, C., Lavorgna, M., De Prisco, R., Coppola, E., Grilli, E., Russo, C., Isidori, M. 2020. Tomato plants (Solanum lycopersicum L.) grown in experimental contaminated soil: Bioconcentration of potentially toxic elements and free radical scavenging evaluation. PLOS ONE, 15(8), e0237031.
  • Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-Gros, R., Bigot, S., Martinez, J. P., Lutts, S. 2019. Tomato Fruit Development and Metabolism. Frontiers in Plant Science, 10, 1554.
  • Shamloul, M., Trusa, J., Mett, V., Yusibov, V. 2014. Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana. Journal of Visualized Experiments, (86).
  • Sheludko, Y. 2008. Agrobacterium-Mediated Transient Expression as an Approach to Production of Recombinant Proteins in Plants. Recent Patents on Biotechnology, 2(3), 198–208.
  • Sparkes, I. A., Runions, J., Kearns, A., Hawes, C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019–2025.
  • Van Eck, J., Keen, P., Tjahjadi, M. 2019. Agrobacterium tumefaciens-mediated transformation of tomato. In Methods in Molecular Biology, 1864, 225–234).
  • Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M. P., Guyon-Debast, A., Chauvin, J. E., … Mazier, M. 2019. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20(2), 402.
  • Wroblewski, T., Tomczak, A., Michelmore, R. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3(2), 259–273.
  • Yamamoto, T., Kashojiya, S., Kamimura, S., Kameyama, T., Ariizumi, T., Ezura, H., Miura, K. 2018. Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 131, 37–46.
  • Zhao, H., Tan, Z., Wen, X., Wang, Y. 2017. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and tween-20. Plants, 6(1), 444.

The Basic Experimental Setup for the Vacuum-assisted, Agrobacterium-mediated Transient Expression in Tomato

Year 2023, , 97 - 106, 28.01.2023
https://doi.org/10.30910/turkjans.1112981

Abstract

Several methods are available for use, to deliver the gene of interest into plants. Among these, Agrobacterium-mediated transformation utilizes binary vector systems to achieve the stable transformation of plants. Alas, this process is labor-intensive and time-consuming as several months are needed to obtain a true transgenic plant. Transient gene expression (e.g., vacuum-infiltration) systems were offered as an alternative over stable transformation, specifically to overcome time-related drawbacks. However, this method requires expensive equipment such as vacuum chambers. In this study, we report a vacuum-infiltration protocol for the transient expression of a reporter gene, modified green fluorescent protein (mGFP), in tomato seedling. With a basic experimental setup (including a custom-built growth chamber) with affordable equipment, we showed that the entire leaf can be infiltrated by applying a mere 200 millibar vacuum for 6 minutes, and thus the transient expression can be achieved in tomato plant, evidenced by PCR-based detection of the T-DNA, detection of mGFP both analytically with SDS-page analysis, and visually by the images acquired by fluorescence microscopy. Furthermore, different Agrobacterium tumefaciens strains were tested for their transformation efficiency, and we showed that LBA4404 was the most effective strain to use in the vacuum-assisted transient expression.

References

  • Beihaghi, M., Marashi, H., Bagheri, A., Sankian, M. 2018. Transient expression of CCL21as recombinant protein in tomato. Biotechnology Reports, 17, 10–15.
  • Chetty, V. J., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W., Orozco-Cárdenas, M. L. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports, 32(2), 239–247.
  • Doyle, J., Doyle, J. 1990. Isolation of DNA from fresh tissue. Focus, 12(13), 13–15.
  • Haseloff, J., Siemering, K. R., Prasher, D. C., Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2122–2127.
  • Heidari-Japelaghi, R., Valizadeh, M., Haddad, R., Dorani-Uliaie, E., Jalali-Javaran, M. 2020. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expression and Purification, 173, 105616.
  • Hellens, R. P., Allan, A. C., Friel, E. N., Bolitho, K., Grafton, K., Templeton, M. D., Karunairetnam, S., Gleave A. P., Laing, W. A. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1(1), 13.
  • Hu, D., Bent, A. F., Hou, X., Li, Y. 2019. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 19(1), 246.
  • Khoeyi, Z. A., Seyfabadi, J., Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41–49.
  • Kimura, S., Sinha, N. 2008. Tomato (Solanum lycopersicum): A model fruit-bearing crop. Cold Spring Harbor Protocols, 3(11), pdb.emo105.
  • Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., Chen, Q. 2013. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. Journal of Visualized Experiments, (77).
  • Liu, P. F., Wang, Y., Ulrich, R. G., Simmons, C. W., Vandergheynst, J. S., Gallo, R. L., Huang, C. M. 2018. Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves. Journal of Immunology Research, 2018.
  • Mamedov, T., Cicek, K., Gulec, B., Ungor, R., Hasanova, G. 2017. In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus. PLoS ONE, 12(8), e0183589.
  • Mardanova, E. S., Blokhina, E. A., Tsybalova, L. M., Peyret, H., Lomonossoff, G. P Ravin, N. V. 2017. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X. Frontiers in Plant Science, 8, 247.
  • Mariashibu, T. S., Subramanyam, K., Arun, M., Mayavan, S., Rajesh, M., Theboral, J., Manickavasagam, M., Ganapathi, A. 2013. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiologiae Plantarum, 35(1), 41–54.
  • Norkunas, K., Harding, R., Dale, J., Dugdale, B. 2018. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods, 14(1), 71. Piscitelli, C., Lavorgna, M., De Prisco, R., Coppola, E., Grilli, E., Russo, C., Isidori, M. 2020. Tomato plants (Solanum lycopersicum L.) grown in experimental contaminated soil: Bioconcentration of potentially toxic elements and free radical scavenging evaluation. PLOS ONE, 15(8), e0237031.
  • Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-Gros, R., Bigot, S., Martinez, J. P., Lutts, S. 2019. Tomato Fruit Development and Metabolism. Frontiers in Plant Science, 10, 1554.
  • Shamloul, M., Trusa, J., Mett, V., Yusibov, V. 2014. Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana. Journal of Visualized Experiments, (86).
  • Sheludko, Y. 2008. Agrobacterium-Mediated Transient Expression as an Approach to Production of Recombinant Proteins in Plants. Recent Patents on Biotechnology, 2(3), 198–208.
  • Sparkes, I. A., Runions, J., Kearns, A., Hawes, C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019–2025.
  • Van Eck, J., Keen, P., Tjahjadi, M. 2019. Agrobacterium tumefaciens-mediated transformation of tomato. In Methods in Molecular Biology, 1864, 225–234).
  • Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M. P., Guyon-Debast, A., Chauvin, J. E., … Mazier, M. 2019. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20(2), 402.
  • Wroblewski, T., Tomczak, A., Michelmore, R. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3(2), 259–273.
  • Yamamoto, T., Kashojiya, S., Kamimura, S., Kameyama, T., Ariizumi, T., Ezura, H., Miura, K. 2018. Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 131, 37–46.
  • Zhao, H., Tan, Z., Wen, X., Wang, Y. 2017. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and tween-20. Plants, 6(1), 444.
There are 24 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Cansu Bülbül 0000-0002-9811-3307

İnanç Soylu 0000-0001-6546-4242

Selcen Doğan 0000-0002-3106-7174

Sevilay Münire Girgin 0000-0002-0244-3919

Nedim Mutlu 0000-0001-7252-5883

Publication Date January 28, 2023
Submission Date May 6, 2022
Published in Issue Year 2023

Cite

APA Bülbül, C., Soylu, İ., Doğan, S., Girgin, S. M., et al. (2023). The Basic Experimental Setup for the Vacuum-assisted, Agrobacterium-mediated Transient Expression in Tomato. Turkish Journal of Agricultural and Natural Sciences, 10(1), 97-106. https://doi.org/10.30910/turkjans.1112981