Research Article
BibTex RIS Cite

Tuzlu Alkali Toprakların Islahında Polivinilalkol (PVA) ve Bakteri Kullanımının Etkinliği

Year 2023, , 53 - 59, 28.01.2023
https://doi.org/10.30910/turkjans.1171662

Abstract

Bu araştırmada, tuzlu alkali toprağın ıslahında organik bir polimer olan polivinialkol (PVA) ile Ca+2 çözen bakteri (Paucimonas lemoignei strain SK56) uygulamasının etkinliği incelenmiştir. Araştırma, toprağa uygulanan PVA’nın etkin dozu (%0.01 w/w), 3 bakteri dozu (X1:104, X2: 106, X3: 108 cfu/ml), PVA + 3 bakteri dozu ve kontrol grubundan oluşmuştur ve 3 tekerrür olarak laboratuvar ortamında yürütülmüştür. Tarla kapasitesi nem düzeyinde 3 ay inkübasyona bırakılan deneme topraklarından alınan bozulmamış toprak örnekleri Mariotte düzeneğinde yıkamaya tabi tutulmuş ve örneklerin hacim ağırlığı (HA), hidrolik iletkenlik (Hİ) değerleri ve yıkanan Na+ miktarı belirlenmiştir. Ayrıca, alınan alt örneklerde agregat stabilitesi (AS), pH, EC ve değişebilir Na+ yüzdesi (ESP) belirlenmiştir. Bakteri uygulamasının Ca+2 çözünürlüğünü ve Ca+2’un Na+ ile yer değiştirmesini artırdığı belirlenirken PVA uygulamasının toprağın strüktürel özelliklerini geliştirerek çözünebilir tuzlar ve Na+’un yıkanabilirliğini artırdığı tespit edilmiştir. Uygulamalar sonrasında en düşük EC değeri (2,20 mS cm-1), en çok yıkanan Na+ miktarı (31,01 mg) ve en düşük ESP değeri (%40,26) PVA+bakteri uygulamasının üçüncü dozunda belirlenmiştir. Tuzlu alkali toprakların ıslahında PVA ve PVA+bakteri uygulamalarının hem fiziksel hem de kimyasal ıslah sürecinde önemli düzeyde etkili oldukları belirlenmiş olup, bu amaç için kullanılabileceği önerilmektedir.

References

  • Aksakal, E.L. ve Öztaș, T. 2010. Effects of PVA, PAM and HA on mean weight diameter and wet aggregate stability of soils. 45. hrvatski i 5. Međunarodni simpozij agronoma, 15-19 veljače 2010, Opatija, Hrvatska. Zbornik Radova.
  • Aksakal, E.L. 2009. Polimer (Pva&Pam) ve Hümik Asit (Ha) Uygulamalarının Donma Çözülme Süreçlerine Maruz Kalan Toprakların Stabilite Ölçütleri Üzerine Etkileri. (Doktora Tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Amezketa, E., Aragüés, R. ve Gazol, R. 2005. Efficiency of sulfuric acid, mined gypsum, and two gypsum by‐products in soil crusting prevention and sodic soil reclamation. Agronomy Journal, 97(3), 983-989.
  • Angin, I., Aksakal, E.L., Sari, S. ve Alanyalioglu, M. 2022. Effective removal of sodium ion as efflorescence at soil surface using ammonium salts. Journal of Environmental Management, 320, 115842.
  • Angin, I., Gurlek, A. ve Sari, S. 2021. The usabılıty of hydrogel ın ıncreasıng the effıcıency of gypsum applıed to salıne-sodıc soıls. Carpathian Journal of Earth and Environmental Sciences, 16(1).
  • Anonim, 2006. T.C. Iğdır Valiliği. Iğdır İli Coğrafi Durum-Toprak Özellikleri. (http://www.igdir.gov.tr/meridty.asp?id=23).
  • Bhargava, G.P., 1989. Salt affected soils of India: A source book. Oxford & IBH Publishing Co. Pvt. Ltd.: New Delhi.
  • Chhabra, R. 2004. Classification of salt‐affected soils. Arid Land Research and Management, 19, 61–79.
  • Chiellini, E., Corti, A., ve Swift, G. 2003. Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polymer degradation and stability, 81(2), 341-351.
  • Dinç, U., Senol, S., Kapur, S., Cangir, C. ve Atalay, I., 2013. Türkiye toprakları. Çukurova Üniversitesi: Adana.
  • FAO, 2017. FAO soils portal, salt-affected soils. Food and Agriculture Organization of the United States Web. https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ Accessed 01.July 2022.
  • Ferreira A.C.C., Leite L.F.C, Araújo A.S.F ve Eisenhauer N. 2015. Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of northeast Brazil. Land Degradation & Development. DOI: 10.1002/ldr.2282.
  • Flint, L.E. ve Flint, A.L., 2002. Methods of Soil Analysis: Part 4 Physical Methods, Porosity. 5, 241-254.
  • Gee, G. W. ve Or, D. 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255-293.
  • Ghafoor, A., Gill, M. A., Hassan, A., Murtaza, G. ve Qadir, M. 2001. Gypsum: an economical amendment for amelioration of saline-sodic waters and soils and for improving crop yields. Int. J. Agric. Biol, 3(3), 266-275.
  • Gökoğlu, B. ve Çaycı, G. 2021. Organik Materyal Kullanımının Alkali Bir Toprağın Bazı Islah Göstergeleri Üzerine Etkisi. Toprak Su Dergisi, 10(1), 60-67.
  • Grossman, R.B. ve Reinsch, T.G., 2002. Methods of soil analysis: Part 4 physical methods, Bulk density and linear extensibility, 5, 201-228.
  • Helmke, P. A., ve Sparks, D. L. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574.
  • Huber, S., Prokop, G., Arrouays, D., Banko, G., Bispo, A., Jones, R.J.A., …Verheijen, F. G. A. 2008. Environmental assessment of soil for monitoring: Volume I indicators & criteria. Luxembourg: EUR 23490 EN/1. Office for the Official Publications of the European Communities.
  • Jones, R.J.A., Verheijen, F.G.A., Reuter, H.I., ve Jones, A.R. 2008. Environmental assessment of soil for monitoring volume V: Procedures & protocols. Luxembourg: EUR 23490 EN/5, Office for the Official Publications of the European Communities.
  • Kassım, H., ve Özdemir, N. 2022. Polimer ve hümik asit uygulamalarının toprağın strüktürel gelişimi üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 10(1), 19-28.
  • Kukal, S.S., Kaur, M., Bawa, S.S. ve Gupta, N. 2007. Water-drop stability of PVA-treated natural soil aggregates from different land uses. Catena, 70(3), 475-479.
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N. ve Abdelly, C. 2009. Effectiveness of compost use in salt‐affected soil. Journal of Hazardous Materials, 171, 29–37. https://doi.org/10.1016/j.jhazmat.
  • Lambers H. 2003. Dryland salinity: a key environmental issue in southern Australia. Plant and Soil 257: 5–7.
  • Loeppert, R.H. ve Suarez, D.L. 1996. Carbonate and gypsum. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 437-474.
  • Nelson, D.W. ve Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical methods, 5, 961-1010.
  • Nimmo, J.R., ve Perkins, K.S. 2002. 2.6 Aggregate stability and size distribution. Methods of soil analysis: part 4 physical methods, 5, 317-328.
  • Oster, J.D., ve Shainberg, I. 2001. Soil responses to sodicity and salinity: Challenges and opportunities. Australian Journal of Soil Research, 39, 1219–1224.
  • Öztaş, T., Özbek, A.K., ve Aksakal, E.L. 2002. Structural developments in soil treated with Polyvinylalcohol. In International Conference on Sustainable Land Use and Management. Soil Sci. Soc. of Turkey Int. Symp (pp. 143-148).
  • Painuli, D.K., ve Pagliai, M. 1990. Effect of polyvinyl alcohol, dextran and humic acid on some physical properties of a clay and loam soil. I. Cracking and aggregate stability. Agrochimica, 34(1-2), 117-130.
  • Pandey V.C., Singh K, Singh B. ve Singh R.P. 2011. New approaches to enhance eco- restoration efficiency of degraded sodic lands: critical research needs and future prospects. Ecological Restoration, 29: 322–325.
  • Power, J.F. ve W.A. Dick. 2000. Land application of agricultural, industrial, and municipal by-products. SSSA Book Ser. 6. SSSA, Madison, WI.
  • Qadir, M., Oster, J.D., Schubert, S., Noble, A.D. & Sahrawat, K.L., 2007. Phytoremediation of sodic and saline- sodic soils. Advances in Agronomy, 96, 197–247.
  • Reynolds, W.D. ve Elrick, D.E. 2002. Methods of Soil Analysis: Part 4 Physical Methods, 5, 844-858.
  • Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435.
  • Richards, L.A. 1954. Origin and nature of saline and alkali soils. In: Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No:60, USDA, Washington, D.C., USA, 1-6.
  • Sarı, S., Aksakal, E.L. ve Öztaş, T. 2019. Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi . Journal of the Institute of Science and Technology , 9 (4) , 2346-2363 . DOI: 10.21597/jist.598068
  • Sarı, S. 2011. Iğdir Yöresi Tuzlu Ve Tuzlu-Alkali Topraklarinin Islahinda Polimerlerin (PVA&PAM) Kullanim Etkinliğinin Belirlenmesi. (Yüksek Lisans Tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü,Erzurum.
  • Sarı, S., ve Öztaş, T. 2017. Polivinilalkol (PVA) Uygulamasının Strüktürel Stabilite Ölçütleri ve Yüzey Akış Kayıpları Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 48(1), 17-24.
  • Saviozzi, A., Cardelli, R., ve Di Puccio, R. 2011. Impact of salinity on soil biological activities: a laboratory experiment. Communications in Soil Science and Plant Analysis, 42(3), 358-367.
  • SPSS 2004. SPSS Inc. SPSS® 13.0 Base User’s Guide, Prentice Hall.
  • Sumner, M.E. ve Miller, W.P. 1996. Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, USA, 5, 1201-1229.
  • Temel, S., ve Şimşek, U. 2011. Iğdır Ovası toprakların çoraklaşma süreci ve çözüm önerileri. Alinteri Journal of Agriculture Science, 21(2), 53-59.
  • Thomas, G.W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, USA, 5, 475-490.
  • Wong, V.N.L., Dalal, R.C. ve Greene, R.S.B. 2009. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology, 41, 29–40. https://doi.org/10.1016/j.apsoil
  • Yılmaz, S., Dönmez, M.F. ve Çoruh, İ. 2020. Farklı lokasyonlarda yabani bitki türlerinden izole edilen bakterilerin tanısı ve azot fikse etme, fosfor, potasyum ve kalsiyum çözme özelliklerinin belirlenmesi. Journal of Agriculture, 3 (2), 71-90. DOI: 10.46876/ja.825647
  • Zia-ur-Rehman, M., Murtaza, G., Qayyum, M.F., Saqib, M. ve Akhtar, J., 2017. Salt-affected soils: Sources, genesis and management. In: Sabir, M., Akhtar, J. & Hakeem, K.R. (eds) Soil Science: Concepts & Applications. University of Agriculture, Faisalabad, Pakistan, pp 191-216.

The Effect of Using Bacteria and Polyvinylalcohol (PVA) in Reclamation of Saline‐sodic Soils

Year 2023, , 53 - 59, 28.01.2023
https://doi.org/10.30910/turkjans.1171662

Abstract

In this study, the effectiveness of the application of polyviniylalcohol (PVA), an organic polymer, and Ca+2 soluble bacteria (Paucimonas lemoignei strain SK56) in the improvement of saline alkaline soil was investigated. The research was carried out in laboratory with 3 replications of PVA applied to the soil (0.01% w/w) and 3 bacterial doses (X1:104, X2: 106, X3: 108 cfu/ml) and PVA + 3 bacteria doses and the control group. Undisturbed soil samples taken from the soils, which were incubated for 3 months at the moisture level of the field capacity, were leached in the Mariotte apparatus and the bulk density (BD), hydraulic conductivity (HC) values and the leached Na+ amount of the samples were determined. In addition, aggregate stability (AS), pH, EC and exchangeable Na+ percentage (ESP) were determined in the sub-samples. It was determined that the application of bacteria increased the solubility of Ca+2 and the displacement of Ca+2 with Na+, while the application of PVA increased the leachability of soluble salts and Na+ by improving the structural properties of the soil. After the applications, the lowest EC value (2.20 mS cm-1), the most leached Na+ amount (31.01 mg) and the lowest ESP value (40.26%) were determined at the third dose of PVA+bacteria application. It has been determined that PVA and PVA+bacteria application in the improvement of saline alkaline soils are significantly effective in both physical and chemical improvement processes, and it is suggested that they can be used for this purpose.

References

  • Aksakal, E.L. ve Öztaș, T. 2010. Effects of PVA, PAM and HA on mean weight diameter and wet aggregate stability of soils. 45. hrvatski i 5. Međunarodni simpozij agronoma, 15-19 veljače 2010, Opatija, Hrvatska. Zbornik Radova.
  • Aksakal, E.L. 2009. Polimer (Pva&Pam) ve Hümik Asit (Ha) Uygulamalarının Donma Çözülme Süreçlerine Maruz Kalan Toprakların Stabilite Ölçütleri Üzerine Etkileri. (Doktora Tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Amezketa, E., Aragüés, R. ve Gazol, R. 2005. Efficiency of sulfuric acid, mined gypsum, and two gypsum by‐products in soil crusting prevention and sodic soil reclamation. Agronomy Journal, 97(3), 983-989.
  • Angin, I., Aksakal, E.L., Sari, S. ve Alanyalioglu, M. 2022. Effective removal of sodium ion as efflorescence at soil surface using ammonium salts. Journal of Environmental Management, 320, 115842.
  • Angin, I., Gurlek, A. ve Sari, S. 2021. The usabılıty of hydrogel ın ıncreasıng the effıcıency of gypsum applıed to salıne-sodıc soıls. Carpathian Journal of Earth and Environmental Sciences, 16(1).
  • Anonim, 2006. T.C. Iğdır Valiliği. Iğdır İli Coğrafi Durum-Toprak Özellikleri. (http://www.igdir.gov.tr/meridty.asp?id=23).
  • Bhargava, G.P., 1989. Salt affected soils of India: A source book. Oxford & IBH Publishing Co. Pvt. Ltd.: New Delhi.
  • Chhabra, R. 2004. Classification of salt‐affected soils. Arid Land Research and Management, 19, 61–79.
  • Chiellini, E., Corti, A., ve Swift, G. 2003. Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polymer degradation and stability, 81(2), 341-351.
  • Dinç, U., Senol, S., Kapur, S., Cangir, C. ve Atalay, I., 2013. Türkiye toprakları. Çukurova Üniversitesi: Adana.
  • FAO, 2017. FAO soils portal, salt-affected soils. Food and Agriculture Organization of the United States Web. https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ Accessed 01.July 2022.
  • Ferreira A.C.C., Leite L.F.C, Araújo A.S.F ve Eisenhauer N. 2015. Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of northeast Brazil. Land Degradation & Development. DOI: 10.1002/ldr.2282.
  • Flint, L.E. ve Flint, A.L., 2002. Methods of Soil Analysis: Part 4 Physical Methods, Porosity. 5, 241-254.
  • Gee, G. W. ve Or, D. 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255-293.
  • Ghafoor, A., Gill, M. A., Hassan, A., Murtaza, G. ve Qadir, M. 2001. Gypsum: an economical amendment for amelioration of saline-sodic waters and soils and for improving crop yields. Int. J. Agric. Biol, 3(3), 266-275.
  • Gökoğlu, B. ve Çaycı, G. 2021. Organik Materyal Kullanımının Alkali Bir Toprağın Bazı Islah Göstergeleri Üzerine Etkisi. Toprak Su Dergisi, 10(1), 60-67.
  • Grossman, R.B. ve Reinsch, T.G., 2002. Methods of soil analysis: Part 4 physical methods, Bulk density and linear extensibility, 5, 201-228.
  • Helmke, P. A., ve Sparks, D. L. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574.
  • Huber, S., Prokop, G., Arrouays, D., Banko, G., Bispo, A., Jones, R.J.A., …Verheijen, F. G. A. 2008. Environmental assessment of soil for monitoring: Volume I indicators & criteria. Luxembourg: EUR 23490 EN/1. Office for the Official Publications of the European Communities.
  • Jones, R.J.A., Verheijen, F.G.A., Reuter, H.I., ve Jones, A.R. 2008. Environmental assessment of soil for monitoring volume V: Procedures & protocols. Luxembourg: EUR 23490 EN/5, Office for the Official Publications of the European Communities.
  • Kassım, H., ve Özdemir, N. 2022. Polimer ve hümik asit uygulamalarının toprağın strüktürel gelişimi üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 10(1), 19-28.
  • Kukal, S.S., Kaur, M., Bawa, S.S. ve Gupta, N. 2007. Water-drop stability of PVA-treated natural soil aggregates from different land uses. Catena, 70(3), 475-479.
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N. ve Abdelly, C. 2009. Effectiveness of compost use in salt‐affected soil. Journal of Hazardous Materials, 171, 29–37. https://doi.org/10.1016/j.jhazmat.
  • Lambers H. 2003. Dryland salinity: a key environmental issue in southern Australia. Plant and Soil 257: 5–7.
  • Loeppert, R.H. ve Suarez, D.L. 1996. Carbonate and gypsum. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 437-474.
  • Nelson, D.W. ve Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical methods, 5, 961-1010.
  • Nimmo, J.R., ve Perkins, K.S. 2002. 2.6 Aggregate stability and size distribution. Methods of soil analysis: part 4 physical methods, 5, 317-328.
  • Oster, J.D., ve Shainberg, I. 2001. Soil responses to sodicity and salinity: Challenges and opportunities. Australian Journal of Soil Research, 39, 1219–1224.
  • Öztaş, T., Özbek, A.K., ve Aksakal, E.L. 2002. Structural developments in soil treated with Polyvinylalcohol. In International Conference on Sustainable Land Use and Management. Soil Sci. Soc. of Turkey Int. Symp (pp. 143-148).
  • Painuli, D.K., ve Pagliai, M. 1990. Effect of polyvinyl alcohol, dextran and humic acid on some physical properties of a clay and loam soil. I. Cracking and aggregate stability. Agrochimica, 34(1-2), 117-130.
  • Pandey V.C., Singh K, Singh B. ve Singh R.P. 2011. New approaches to enhance eco- restoration efficiency of degraded sodic lands: critical research needs and future prospects. Ecological Restoration, 29: 322–325.
  • Power, J.F. ve W.A. Dick. 2000. Land application of agricultural, industrial, and municipal by-products. SSSA Book Ser. 6. SSSA, Madison, WI.
  • Qadir, M., Oster, J.D., Schubert, S., Noble, A.D. & Sahrawat, K.L., 2007. Phytoremediation of sodic and saline- sodic soils. Advances in Agronomy, 96, 197–247.
  • Reynolds, W.D. ve Elrick, D.E. 2002. Methods of Soil Analysis: Part 4 Physical Methods, 5, 844-858.
  • Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435.
  • Richards, L.A. 1954. Origin and nature of saline and alkali soils. In: Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No:60, USDA, Washington, D.C., USA, 1-6.
  • Sarı, S., Aksakal, E.L. ve Öztaş, T. 2019. Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi . Journal of the Institute of Science and Technology , 9 (4) , 2346-2363 . DOI: 10.21597/jist.598068
  • Sarı, S. 2011. Iğdir Yöresi Tuzlu Ve Tuzlu-Alkali Topraklarinin Islahinda Polimerlerin (PVA&PAM) Kullanim Etkinliğinin Belirlenmesi. (Yüksek Lisans Tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü,Erzurum.
  • Sarı, S., ve Öztaş, T. 2017. Polivinilalkol (PVA) Uygulamasının Strüktürel Stabilite Ölçütleri ve Yüzey Akış Kayıpları Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 48(1), 17-24.
  • Saviozzi, A., Cardelli, R., ve Di Puccio, R. 2011. Impact of salinity on soil biological activities: a laboratory experiment. Communications in Soil Science and Plant Analysis, 42(3), 358-367.
  • SPSS 2004. SPSS Inc. SPSS® 13.0 Base User’s Guide, Prentice Hall.
  • Sumner, M.E. ve Miller, W.P. 1996. Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, USA, 5, 1201-1229.
  • Temel, S., ve Şimşek, U. 2011. Iğdır Ovası toprakların çoraklaşma süreci ve çözüm önerileri. Alinteri Journal of Agriculture Science, 21(2), 53-59.
  • Thomas, G.W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, USA, 5, 475-490.
  • Wong, V.N.L., Dalal, R.C. ve Greene, R.S.B. 2009. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology, 41, 29–40. https://doi.org/10.1016/j.apsoil
  • Yılmaz, S., Dönmez, M.F. ve Çoruh, İ. 2020. Farklı lokasyonlarda yabani bitki türlerinden izole edilen bakterilerin tanısı ve azot fikse etme, fosfor, potasyum ve kalsiyum çözme özelliklerinin belirlenmesi. Journal of Agriculture, 3 (2), 71-90. DOI: 10.46876/ja.825647
  • Zia-ur-Rehman, M., Murtaza, G., Qayyum, M.F., Saqib, M. ve Akhtar, J., 2017. Salt-affected soils: Sources, genesis and management. In: Sabir, M., Akhtar, J. & Hakeem, K.R. (eds) Soil Science: Concepts & Applications. University of Agriculture, Faisalabad, Pakistan, pp 191-216.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Faruk Tohumcu 0000-0003-4092-4868

Serdar Sarı 0000-0002-9990-7918

Mesude Figen Dönmez 0000-0002-7992-8252

Publication Date January 28, 2023
Submission Date September 6, 2022
Published in Issue Year 2023

Cite

APA Tohumcu, F., Sarı, S., & Dönmez, M. F. (2023). Tuzlu Alkali Toprakların Islahında Polivinilalkol (PVA) ve Bakteri Kullanımının Etkinliği. Turkish Journal of Agricultural and Natural Sciences, 10(1), 53-59. https://doi.org/10.30910/turkjans.1171662