Research Article
BibTex RIS Cite

Yoncanın Kurutulmasında Farklı Kurutma Sistemlerinin Sera Gazı Emisyonlarına Etkisi

Year 2023, , 615 - 621, 23.07.2023
https://doi.org/10.30910/turkjans.1215223

Abstract

Hayvancılıkta en önemli yem kaynaklarından birisi olan yoncanın biçildikten sonra besinsel yapısının uzun süre korunması için nem içeriğinin uygun seviyelere düşürülmesi gerekmektedir. Son yıllarda artan çevre sorunları sebebiyle yonca kurutma için yapılacak işlemin çevreye dost bir yöntem olmasına özellikle dikkat edilmesi gerekmektedir. Bu çalışmanın amacı, yonca kurutmada farklı kurutma yöntemlerinin CO2 emisyonlarının etkisinin belirlenmesi ve karşılaştırılmasıdır. Çalışmada mikrodalga (100 W, 200 W, 300 W), konvektif (60 °C, 80 °C, 100 °C), hibrit (konvektif+mikrodalga: 200 W+60 °C, 200 W+80 °C) ve dondurarak kurutma yöntemleri ele alınmış ve bu yöntemlerin rüzgâr, güneş, hidroelektrik ve jeotermal santrallere göre CO2 emisyonları belirlenmiştir. Sonuçlara göre en yüksek CO2 emisyonu değeri jeotermal enerji santralinde 72.62 g kg-1 ile 300 W mikrodalga kurutmada elde edilmiştir. En düşük emisyon değeri ise rüzgâr enerji santralinde 2.14 g kg-1 ile 60 °C konvektif kurutmada belirlenmiştir. Genel olarak en yüksek emisyon sonuçları jeotermal enerji santrali için, en düşük sonuçlar ise rüzgâr enerji santrali için bulunmuştur. Çalışmada mikrodalga gücünün ve kurutma sıcaklığının CO2 emisyonunu arttırdığı ortaya konmuştur.

Supporting Institution

Erciyes Üniversites, Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü

Project Number

FYL-2021-11354

Thanks

Bu çalışma, Erciyes Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü tarafından FYL-2021-11354 no’lu proje ile desteklenmiştir. & Mevcut çalışma Erciyes Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı öğrencisi Serkan Karpuzcu’nun yüksek lisans tezinden türetilmiştir.

References

  • Akmal, M., Uzma, F. ve Asim, M. 2011. Crop growth in early spring and radiation use efficiency in alfalfa. Pakistan Journal of Botany, 43(1): 635-641.
  • AOAC (1990) Official methods of analysis of the Association of Official Analytical Chemists, vol II, 15th edn. Sec. 985.29. The Association, Arlington, VA, USA.
  • Barati, E. ve Esfahani, J.A. 2010. Mathematical modeling of convective drying: lumped temperature and spatially distributed moisture in slab. Energy, 36: 2294e301.
  • Çetin, N. 2022. Comparative assessment of energy analysis, drying kinetics, and biochemical composition of tomato waste under different drying conditions. Scientia Horticulturae, 305: 111405.
  • Çetin, N., ve Sağlam, C. 2022. Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. Food Bioscience, 47: 101670.
  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z.J. ve Xiao, H. W. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9): 1408-1432.
  • Gökalp, Z. ve Çetin, N. 2022. Evaluation of GGE of different process for drying orange slices. Current Trends in Natural Sciences, 11(21): 170-175.
  • Hsu, C. L., Chen, W., Weng, Y. M., ve Tseng, C. Y. 2003. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry, 83(1): 85-92.
  • IEA, 2015. CO2 emissions from fuel combustion IEA statistics highlights. In: International Energy Agency, 2015 Edition. 9 rue de la Federation 75739 Paris Cedex 15, France.
  • Kamalak, A., Canbolat, O., Erol, A., Kilinc, C., Kizilsimsek, M., Ozkan, C. O. ve Ozkose, E. 2005. Effect of variety on chemical composition, in vitro gas production, metabolizable energy and organic matter digestibility of alfalfa hays. Livestock Research for Rural Development, 17(7): 1-7.
  • Kaveh, M., Chayjan, R.A., Taghinezhad, E., Sharabiani, V.R. ve Motevali, A. 2020. Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of Cleaner Production, 259: 120963.
  • Melikoglu, M. 2013. Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030. Renewable and Sustainable Energy Reviews, 22: 393-400.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B. ve Khoshtaghaza, M.H., 2014. Comparison of energy parameters in various dryers. Energy Conversion and Management, 87: 711e725.
  • Motevali, A. ve Koloor, R.T. 2017. A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. Journal of Cleaner Production, 154: 445-461.
  • Pinar, H., Çetin, N., Ciftci, B., Karaman, K. ve Kaplan, M. 2021. Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. Journal of Food Composition and Analysis, 102: 103976.
  • Radovic, D.J., Sokolovic, J. ve Markovic, J. 2009. Alfalfa-Most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25(5-6): 465-475.
  • Siles, J. A., González-Tello, P., Martín, M. A. ve Martín, A. 2015. Kinetics of alfalfa drying: Simultaneous Modelling of moisture content and temperature. Biosystems Engineering, 129: 185-196.
  • Sovacool, B. K. 2008. Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy, 36(8): 2950-2963.
  • Tripathy, P. P. 2015. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation. Journal of Food Science and Technology, 52: 1383-1393.
  • Zheng, X., Jiang, Y. ve Pan, Z. 2005. Drying and quality characteristics of different components of alfalfa. In 2005 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers.
  • Zia, M. P., ve Alibas, I. 2021. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chemistry, 364: 130358.
  • Zielinska, M. ve Markowski, M. 2016. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.). Food Chemistry, 196: 1188-1196.

The Effect of Different Dryers on Greenhouse Gas Emissions in the Drying of Alfalfa

Year 2023, , 615 - 621, 23.07.2023
https://doi.org/10.30910/turkjans.1215223

Abstract

In order to preserve the nutrient properties of alfalfa, which is one of the most important feed sources in livestock, for a long time after harvesting, the moisture content must be reduced to appropriate levels. In recent years, due to the increasing environmental problems, it is necessary to special attention to the fact that the process of drying alfalfa is an environmentally friendly method. The aim of this study is to determine and compare the effects of different drying methods on CO2 emissions in alfalfa drying. In the study, microwave (100 W, 200 W, 300 W), convective (60 °C, 80 °C, 100 °C), hybrid (convective+microwave: 200 W+60 °C, 200 W+80°C), and freeze-drying methods were used, and CO2 emissions of these methods were determined according to wind, solar, hydroelectric, and geothermal power plants. According to the results, the highest CO2 emission value was obtained in the geothermal power plant with 72.62 g kg-1 in 300 W microwave drying. The lowest emission value was determined at 60 °C convective drying with 2.14 g kg-1 in the wind power plant. In general, the highest emission results were found for the geothermal power plant, while the lowest results were found for the wind power plant. In the present study, it was revealed that microwave power and drying temperature increased CO2 emissions.

Project Number

FYL-2021-11354

References

  • Akmal, M., Uzma, F. ve Asim, M. 2011. Crop growth in early spring and radiation use efficiency in alfalfa. Pakistan Journal of Botany, 43(1): 635-641.
  • AOAC (1990) Official methods of analysis of the Association of Official Analytical Chemists, vol II, 15th edn. Sec. 985.29. The Association, Arlington, VA, USA.
  • Barati, E. ve Esfahani, J.A. 2010. Mathematical modeling of convective drying: lumped temperature and spatially distributed moisture in slab. Energy, 36: 2294e301.
  • Çetin, N. 2022. Comparative assessment of energy analysis, drying kinetics, and biochemical composition of tomato waste under different drying conditions. Scientia Horticulturae, 305: 111405.
  • Çetin, N., ve Sağlam, C. 2022. Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. Food Bioscience, 47: 101670.
  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z.J. ve Xiao, H. W. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9): 1408-1432.
  • Gökalp, Z. ve Çetin, N. 2022. Evaluation of GGE of different process for drying orange slices. Current Trends in Natural Sciences, 11(21): 170-175.
  • Hsu, C. L., Chen, W., Weng, Y. M., ve Tseng, C. Y. 2003. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry, 83(1): 85-92.
  • IEA, 2015. CO2 emissions from fuel combustion IEA statistics highlights. In: International Energy Agency, 2015 Edition. 9 rue de la Federation 75739 Paris Cedex 15, France.
  • Kamalak, A., Canbolat, O., Erol, A., Kilinc, C., Kizilsimsek, M., Ozkan, C. O. ve Ozkose, E. 2005. Effect of variety on chemical composition, in vitro gas production, metabolizable energy and organic matter digestibility of alfalfa hays. Livestock Research for Rural Development, 17(7): 1-7.
  • Kaveh, M., Chayjan, R.A., Taghinezhad, E., Sharabiani, V.R. ve Motevali, A. 2020. Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of Cleaner Production, 259: 120963.
  • Melikoglu, M. 2013. Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030. Renewable and Sustainable Energy Reviews, 22: 393-400.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B. ve Khoshtaghaza, M.H., 2014. Comparison of energy parameters in various dryers. Energy Conversion and Management, 87: 711e725.
  • Motevali, A. ve Koloor, R.T. 2017. A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. Journal of Cleaner Production, 154: 445-461.
  • Pinar, H., Çetin, N., Ciftci, B., Karaman, K. ve Kaplan, M. 2021. Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. Journal of Food Composition and Analysis, 102: 103976.
  • Radovic, D.J., Sokolovic, J. ve Markovic, J. 2009. Alfalfa-Most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25(5-6): 465-475.
  • Siles, J. A., González-Tello, P., Martín, M. A. ve Martín, A. 2015. Kinetics of alfalfa drying: Simultaneous Modelling of moisture content and temperature. Biosystems Engineering, 129: 185-196.
  • Sovacool, B. K. 2008. Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy, 36(8): 2950-2963.
  • Tripathy, P. P. 2015. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation. Journal of Food Science and Technology, 52: 1383-1393.
  • Zheng, X., Jiang, Y. ve Pan, Z. 2005. Drying and quality characteristics of different components of alfalfa. In 2005 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers.
  • Zia, M. P., ve Alibas, I. 2021. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chemistry, 364: 130358.
  • Zielinska, M. ve Markowski, M. 2016. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.). Food Chemistry, 196: 1188-1196.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Serkan Karpuzcu 0000-0002-5608-3197

Mahmut Kaplan 0000-0002-6717-4115

Necati Çetin 0000-0001-8524-8272

Project Number FYL-2021-11354
Early Pub Date July 24, 2023
Publication Date July 23, 2023
Submission Date December 7, 2022
Published in Issue Year 2023

Cite

APA Karpuzcu, S., Kaplan, M., & Çetin, N. (2023). Yoncanın Kurutulmasında Farklı Kurutma Sistemlerinin Sera Gazı Emisyonlarına Etkisi. Turkish Journal of Agricultural and Natural Sciences, 10(3), 615-621. https://doi.org/10.30910/turkjans.1215223