Research Article
BibTex RIS Cite

Mycelial Mass Development of Antagonist Clonostachys rosea Isolate in Different pH Conditions

Year 2024, , 149 - 155, 28.01.2024
https://doi.org/10.30910/turkjans.1355645

Abstract

Biopesticides are one of the most popular elements of the fight against plant diseases and pests, biology. Clonostachys rosae is a mycoparasitic fungus that can act against many plant pathogenic fungi. The main obstacle to the widespread use of biological control agents is the difficulties encountered in mass production to a certain standard. Developing in solid media has disadvantages such as the relatively low amount of product obtained and the difficulty of obtaining products suitable for end use. In this study, mycelial mass growth of the antagonist fungus C. rosea in liquid culture at different pH conditions was investigated. The pH of the potato dextrose broth liquid medium was adjusted to 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7 and 8 and sterilized at 121 °C for 20 minutes. Then, 0.5 mL C. rosea spore suspension with 1x106 spores mL-1 was added to 30 mL Erlenmeyer flasks with various pH values and incubated in a shaker incubator at 50-100 rpm for 8 days at 25 °C. As a result of the studies carried out for the mycelial growth of the antagonist C. rosea isolate, it was determined that the optimum pH level where it developed best and formed the most mycelial mass, has been determined as pH 6.5 for both wet and dry weight. In addition, C. rosea did not develop between 1.5-3.5 pH values. The data obtained are expected to contribute to the mass production of C. rosea.

References

  • Anonim. 2018. Kimyasal Mücadele. Tarım ve Orman Bakanlığı.
  • Avan, M. ve Kotan, R. 2021. Fungusların mikrobiyal gübre veya biyopestisit olarak tarımda kullanılması. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3: 167-191. Badaluddin, N. A., Jamaluddin, S. N. T., Ihsam, N. S., Sajili, M. H., Khalit, S. I. ve Mohamed, N. A. 2018. Molecular identification of isolated fungi from Kelantan and Terengganu using internal transcriber spacer (ITS) region. Journal of Agrobiotechnology, 9: 222-231.
  • Bainier, G. 1907. Mycothéque de l'école de Pharmacie. XI. Paecilomyces, genre nouveau de Mucédinées. Bulletin Trimestrielle de la Societe de Mycologie Française, 23: 26-27.
  • Borkar, S.G., 2015, Microbes as Biofertilizers and Their Production Technology, Woodhead Publishing India Pvt. Ltd., 218p.
  • Çevik, R., Demir, S., Türkölmez, Ş. ve Boyno, G. 2022. The effect of Clonostachys rosea (sch.) schroers and samuels against verticillium wilt (Verticillium dahliae Kleb.) and early blight [Alternaria solani (Ell. and G. Martin) Sor.] diseases in tomato plants. Yuzuncu Yıl University Journal of Agricultural Sciences, 32: 372-382.
  • Chatterton, S. ve Punja, Z. K. 2009. Chitinase and β-1, 3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian journal of microbiology, 55: 356-367.
  • de Andrade Carvalho, A. L., de Rezende, L. C., Costa, L. B., de Almeida Halfeld-Vieira, B., Pinto, Z. V., Morandi, M. A. B., de Medeiros, F. H. V. ve Bettiol, W. 2018. Optimizing the mass production of Clonostachys rosea by liquid-state fermentation. Biological control, 118: 16-25.
  • Food and Agriculture Organization of the United States (FAO), www.faostat.org (Erişim tarihi: 04.10.2023).
  • Fatema, U., Broberg, A., Jensen, D. F., Karlsson, M. ve Dubey, M. 2018. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, 8: 15009.
  • Ferrarezi, R. S., Lin, X., Gonzalez Neira, A. C., Tabay Zambon, F., Hu, H., Wang, X., Huang, J.-H. ve Fan, G. 2022. Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Frontiers in Plant Science, 13: 856937.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. ve Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. science, 327: 812-818. Hamiduzzaman, M. M., Sinia, A., Guzman-Novoa, E. ve Goodwin, P. H. 2012. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). Journal of invertebrate pathology, 111: 237-243.
  • Jensen, B., Knudsen, I. M., Madsen, M. ve Jensen, D. F. 2004. Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology, 94: 551-560.
  • Jensen, J., Cusini, M. ve Gomberg, M. 2016. European guideline on Mycoplasma genitalium infections. In European guideline on Mycoplasma genitalium infections.
  • Kamou, N. N., Cazorla, F., Kandylas, G. ve Lagopodi, A. L. 2020. Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Archives of microbiology, 202: 257-267.
  • Kosawang, C., Karlsson, M., Vélëz, H., Rasmussen, P. H., Collinge, D. B., Jensen, B. ve Jensen, D. F. 2014. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biology, 118: 364-373.
  • Kotan, R., 2020. Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. s.158.
  • Krauss, U. ve Soberanis, W. 2001. Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological control, 22: 149-158.
  • Lahoz, E., Contillo, R. ve Porrone, F. 2004. Induction of systemic resistance to Erysiphe orontii cast in tobacco by application on roots of an isolate of Gliocladium roseum Bainier. Journal of Phytopathology, 152: 465-470.
  • Lysøe, E., Dees, M. W. ve Brurberg, M. B. 2017. A three-way transcriptomic interaction study of a biocontrol agent (Clonostachys rosea), a fungal pathogen (Helminthosporium solani), and a potato host (Solanum tuberosum). Molecular plant-microbe interactions, 30: 646-655.
  • Mascarin, G. M., da Silva A. V. R., da Silva, T. P., Kobori, N. N., Morandi, M. A. B ve Bettiol, W. (2022). Clonostachys rosea: Production by Submerged Culture and Bioactivity Against Sclerotinia sclerotiorum and Bemisia tabaci. Front. Microbiol., 13:851000. doi: 10.3389/fmicb.2022.851000
  • Muvea, A. M., Meyhöfer, R., Subramanian, S., Poehling, H.-M., Ekesi, S. ve Maniania, N. K. 2014. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PloS one, 9: e108242.
  • Park, Y.-H., Mishra, R. C., Yoon, S., Kim, H., Park, C., Seo, S.-T. ve Bae, H. 2019. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. Journal of Ginseng Research, 43: 408-420.
  • Pasqualetti, M., Barghini, P., Giovannini, V. ve Fenice, M. 2019. High production of chitinolytic activity in halophilic conditions by a new marine strain of Clonostachys rosea. Molecules, 24: 1880.
  • Rodriguez, M. A., Rothen, C., Lo, T. E., Cabrera, G. M. ve Godeas, A. M. 2015. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. Biocontrol science and technology, 25: 1388-1409.
  • Rodríguez-Martínez, R., Mendoza-de-Gives, P., Aguilar-Marcelino, L., López-Arellano, M. E., Gamboa-Angulo, M., Hanako Rosas-Saito, G., Reyes-Estébanez, M. ve Guadalupe García-Rubio, V. 2018. In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. BioMed Research International, 2018.
  • Rybczyńska-Tkaczyk, K. ve Korniłłowicz-Kowalska, T. 2018. Activities of Versatile Peroxidase in Cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during Biotransformation of Alkali Lignin. Journal of AOAC International, 101: 1415-1421.
  • Samsudin, N. I. P., Rodriguez, A., Medina, A. ve Magan, N. 2017. Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B1 production by Fusarium verticillioides on maize cobs of different ripening stages. International journal of food microbiology, 246: 72-79.
  • Saraiva, R. M., Czymmek, K. J., Borges, Á. V., Caires, N. P. ve Maffia, L. A. 2015. Confocal microscopy study to understand Clonostachys rosea and Botrytis cinerea interactions in tomato plants. Biocontrol science and technology, 25: 56-71.
  • Schöneberg, T., Liebscher, I., Luo, R., Monk, K. R. ve Piao, X. 2015. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. Journal of Receptors and Signal Transduction, 35: 220-223.
  • Schroers, H.-J., Samuels, G. J., Seifert, K. A. ve Gams, W. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia, 91: 365-385.
  • Sun, M., Chen, Y., Liu, J., Li, S. ve Ma, G. 2014. Effects of culture conditions on spore types of Clonostachys rosea 67‐1 in submerged fermentation. Letters in applied microbiology, 58: 318-324.
  • Sun, Z.-B., Li, S.-D., Ren, Q., Xu, J.-L., Lu, X. ve Sun, M.-H. 2020. Biology and applications of Clonostachys rosea. Journal of applied microbiology, 129: 486-495.
  • Sun, Z.-B., Sun, M.-H. ve Li, S.-D. 2015a. Draft genome sequence of mycoparasite Clonostachys rosea strain 67-1. Genome Announcements, 3: 10.1128/genomea. 00546-00515.
  • Sun, Z.-B., Sun, M.-H. ve Li, S.-D. 2015b. Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum. Scientific Reports, 5: 18169.
  • Sun, Z. B., Zhang, J., Sun, M. H. ve Li, S. D. 2018. Identification of genes related to chlamydospore formation in Clonostachys rosea 67‐1. MicrobiologyOpen, 8: e00624.
  • Wang, J. 2012. The effect of combining two biological control microbes on seed and root colonization.
  • Wang, Q., Chen, X., Chai, X., Xue, D., Zheng, W., Shi, Y. ve Wang, A. 2019. The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of Clonostachys rosea-induced resistance to gray mold disease in tomato. Phytopathology, 109: 1102-1114.
  • Yohalem, D. S., Nielsen, K., Green, H. ve Funck Jensen, D. 2004. Biocontrol agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented. FEMS microbiology ecology, 47: 297-303.

Antagonist Clonostachys rosea İzolatının Farklı Ph Koşullarında Miselial Kitle Gelişimi

Year 2024, , 149 - 155, 28.01.2024
https://doi.org/10.30910/turkjans.1355645

Abstract

Biyopestisitler, bitki hastalık ve zararlılarla mücadelede, biyoloji mücadelenin en popüler unsurlarındandırlar. Clonostachys rosae birçok bitki patojeni fungusa karşı etki gösterebilen mikoparazit bir fungustur. Biyolojik mücadele ajanlarının yaygın kullanımlarının önündeki en büyük engel, belli bir standartta kitlesel olarak üretilmelerinde karşılaşılan zorluklardır. Katı besi yerlerinde geliştirme, elde edilen ürün miktarının nispeten az olması ve son kullanıma uygun ürün eldesinin zor olması gibi olumsuzluklar içermektedir. Bu çalışma kapsamında antagonist fungus C. rosea’nin sıvı kültürde, farklı pH koşullarındaki miseliyal kitle gelişimi incelenmiştir. Patates Dekstroz Broth sıvı ortamının pH'sı 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7 ve 8’e ayarlanmış ve 121 °C'de 20 dakika sterilize edilerek 0.5 mL C. rosea spor süspansiyonu çeşitli pH değerlerine sahip 30 mL Erlenmeyer şişelerine aşılanmıştır ve 25 ° C 'de 8 gün çalkalayıcılı inkübatörde 50-100 rpm’de inkübe edilmiştir. Antagonist C. rosea izolatının miselyal gelişimi için yapılan çalışmalar sonucunda C. rosea’nin 1,5-3,5 pH değerleri arasında gelişim göstermediği, en iyi geliştiği ve en fazla miseliyal kitle oluşturduğu optimum pH derecesinin hem yaş ve hem de kuru ağırlıkta pH 6.5 seviyesinde olduğu belirlenmiştir. Elde edilen verilerin C.rosea’nın kitlesel üretimine katkı sunması beklenmektedir.

References

  • Anonim. 2018. Kimyasal Mücadele. Tarım ve Orman Bakanlığı.
  • Avan, M. ve Kotan, R. 2021. Fungusların mikrobiyal gübre veya biyopestisit olarak tarımda kullanılması. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3: 167-191. Badaluddin, N. A., Jamaluddin, S. N. T., Ihsam, N. S., Sajili, M. H., Khalit, S. I. ve Mohamed, N. A. 2018. Molecular identification of isolated fungi from Kelantan and Terengganu using internal transcriber spacer (ITS) region. Journal of Agrobiotechnology, 9: 222-231.
  • Bainier, G. 1907. Mycothéque de l'école de Pharmacie. XI. Paecilomyces, genre nouveau de Mucédinées. Bulletin Trimestrielle de la Societe de Mycologie Française, 23: 26-27.
  • Borkar, S.G., 2015, Microbes as Biofertilizers and Their Production Technology, Woodhead Publishing India Pvt. Ltd., 218p.
  • Çevik, R., Demir, S., Türkölmez, Ş. ve Boyno, G. 2022. The effect of Clonostachys rosea (sch.) schroers and samuels against verticillium wilt (Verticillium dahliae Kleb.) and early blight [Alternaria solani (Ell. and G. Martin) Sor.] diseases in tomato plants. Yuzuncu Yıl University Journal of Agricultural Sciences, 32: 372-382.
  • Chatterton, S. ve Punja, Z. K. 2009. Chitinase and β-1, 3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian journal of microbiology, 55: 356-367.
  • de Andrade Carvalho, A. L., de Rezende, L. C., Costa, L. B., de Almeida Halfeld-Vieira, B., Pinto, Z. V., Morandi, M. A. B., de Medeiros, F. H. V. ve Bettiol, W. 2018. Optimizing the mass production of Clonostachys rosea by liquid-state fermentation. Biological control, 118: 16-25.
  • Food and Agriculture Organization of the United States (FAO), www.faostat.org (Erişim tarihi: 04.10.2023).
  • Fatema, U., Broberg, A., Jensen, D. F., Karlsson, M. ve Dubey, M. 2018. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, 8: 15009.
  • Ferrarezi, R. S., Lin, X., Gonzalez Neira, A. C., Tabay Zambon, F., Hu, H., Wang, X., Huang, J.-H. ve Fan, G. 2022. Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Frontiers in Plant Science, 13: 856937.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. ve Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. science, 327: 812-818. Hamiduzzaman, M. M., Sinia, A., Guzman-Novoa, E. ve Goodwin, P. H. 2012. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). Journal of invertebrate pathology, 111: 237-243.
  • Jensen, B., Knudsen, I. M., Madsen, M. ve Jensen, D. F. 2004. Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology, 94: 551-560.
  • Jensen, J., Cusini, M. ve Gomberg, M. 2016. European guideline on Mycoplasma genitalium infections. In European guideline on Mycoplasma genitalium infections.
  • Kamou, N. N., Cazorla, F., Kandylas, G. ve Lagopodi, A. L. 2020. Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Archives of microbiology, 202: 257-267.
  • Kosawang, C., Karlsson, M., Vélëz, H., Rasmussen, P. H., Collinge, D. B., Jensen, B. ve Jensen, D. F. 2014. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biology, 118: 364-373.
  • Kotan, R., 2020. Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. s.158.
  • Krauss, U. ve Soberanis, W. 2001. Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological control, 22: 149-158.
  • Lahoz, E., Contillo, R. ve Porrone, F. 2004. Induction of systemic resistance to Erysiphe orontii cast in tobacco by application on roots of an isolate of Gliocladium roseum Bainier. Journal of Phytopathology, 152: 465-470.
  • Lysøe, E., Dees, M. W. ve Brurberg, M. B. 2017. A three-way transcriptomic interaction study of a biocontrol agent (Clonostachys rosea), a fungal pathogen (Helminthosporium solani), and a potato host (Solanum tuberosum). Molecular plant-microbe interactions, 30: 646-655.
  • Mascarin, G. M., da Silva A. V. R., da Silva, T. P., Kobori, N. N., Morandi, M. A. B ve Bettiol, W. (2022). Clonostachys rosea: Production by Submerged Culture and Bioactivity Against Sclerotinia sclerotiorum and Bemisia tabaci. Front. Microbiol., 13:851000. doi: 10.3389/fmicb.2022.851000
  • Muvea, A. M., Meyhöfer, R., Subramanian, S., Poehling, H.-M., Ekesi, S. ve Maniania, N. K. 2014. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PloS one, 9: e108242.
  • Park, Y.-H., Mishra, R. C., Yoon, S., Kim, H., Park, C., Seo, S.-T. ve Bae, H. 2019. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. Journal of Ginseng Research, 43: 408-420.
  • Pasqualetti, M., Barghini, P., Giovannini, V. ve Fenice, M. 2019. High production of chitinolytic activity in halophilic conditions by a new marine strain of Clonostachys rosea. Molecules, 24: 1880.
  • Rodriguez, M. A., Rothen, C., Lo, T. E., Cabrera, G. M. ve Godeas, A. M. 2015. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. Biocontrol science and technology, 25: 1388-1409.
  • Rodríguez-Martínez, R., Mendoza-de-Gives, P., Aguilar-Marcelino, L., López-Arellano, M. E., Gamboa-Angulo, M., Hanako Rosas-Saito, G., Reyes-Estébanez, M. ve Guadalupe García-Rubio, V. 2018. In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. BioMed Research International, 2018.
  • Rybczyńska-Tkaczyk, K. ve Korniłłowicz-Kowalska, T. 2018. Activities of Versatile Peroxidase in Cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during Biotransformation of Alkali Lignin. Journal of AOAC International, 101: 1415-1421.
  • Samsudin, N. I. P., Rodriguez, A., Medina, A. ve Magan, N. 2017. Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B1 production by Fusarium verticillioides on maize cobs of different ripening stages. International journal of food microbiology, 246: 72-79.
  • Saraiva, R. M., Czymmek, K. J., Borges, Á. V., Caires, N. P. ve Maffia, L. A. 2015. Confocal microscopy study to understand Clonostachys rosea and Botrytis cinerea interactions in tomato plants. Biocontrol science and technology, 25: 56-71.
  • Schöneberg, T., Liebscher, I., Luo, R., Monk, K. R. ve Piao, X. 2015. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. Journal of Receptors and Signal Transduction, 35: 220-223.
  • Schroers, H.-J., Samuels, G. J., Seifert, K. A. ve Gams, W. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia, 91: 365-385.
  • Sun, M., Chen, Y., Liu, J., Li, S. ve Ma, G. 2014. Effects of culture conditions on spore types of Clonostachys rosea 67‐1 in submerged fermentation. Letters in applied microbiology, 58: 318-324.
  • Sun, Z.-B., Li, S.-D., Ren, Q., Xu, J.-L., Lu, X. ve Sun, M.-H. 2020. Biology and applications of Clonostachys rosea. Journal of applied microbiology, 129: 486-495.
  • Sun, Z.-B., Sun, M.-H. ve Li, S.-D. 2015a. Draft genome sequence of mycoparasite Clonostachys rosea strain 67-1. Genome Announcements, 3: 10.1128/genomea. 00546-00515.
  • Sun, Z.-B., Sun, M.-H. ve Li, S.-D. 2015b. Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum. Scientific Reports, 5: 18169.
  • Sun, Z. B., Zhang, J., Sun, M. H. ve Li, S. D. 2018. Identification of genes related to chlamydospore formation in Clonostachys rosea 67‐1. MicrobiologyOpen, 8: e00624.
  • Wang, J. 2012. The effect of combining two biological control microbes on seed and root colonization.
  • Wang, Q., Chen, X., Chai, X., Xue, D., Zheng, W., Shi, Y. ve Wang, A. 2019. The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of Clonostachys rosea-induced resistance to gray mold disease in tomato. Phytopathology, 109: 1102-1114.
  • Yohalem, D. S., Nielsen, K., Green, H. ve Funck Jensen, D. 2004. Biocontrol agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented. FEMS microbiology ecology, 47: 297-303.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Research Article
Authors

Fatih Ölmez 0000-0001-7016-2708

Şahimerdan Türkölmez 0000-0001-8775-5470

Early Pub Date January 28, 2024
Publication Date January 28, 2024
Submission Date September 5, 2023
Published in Issue Year 2024

Cite

APA Ölmez, F., & Türkölmez, Ş. (2024). Antagonist Clonostachys rosea İzolatının Farklı Ph Koşullarında Miselial Kitle Gelişimi. Turkish Journal of Agricultural and Natural Sciences, 11(1), 149-155. https://doi.org/10.30910/turkjans.1355645