Research Article
BibTex RIS Cite

Investigation of Powdery Mildew Susceptibility of Some Hybrid Vine Genotypes with Some Markers Related to Powdery Mildew Resistance

Year 2024, , 506 - 513, 30.04.2024
https://doi.org/10.30910/turkjans.1454926

Abstract

The study was conducted in greenhouses belonging to Tokat Gaziosmanpaşa University, Agricultural Application and Research Center between 2022 and 2023. In the study, six Narince × Kishmish Vatkana (NKV) hybrids and 66 Narince x Regent (NRG) hybrids were screened for Ren1, Ren3 and Ren9 locus with markers related to powdery mildew resistance using the MAS method. The polymerase chain reaction (PCR) amplification products were visualised on an agarose gel, and the samples were examined to determine whether they exhibited a band (positive result) or not (negative result). The results of the study indicated that the band image results of the studied genes varied among the genotypes. The band image results of NRG-7, NRG-146, NRG-183, NRG-195, NRG-196, NRG-197 and NRG-200 genotypes were found to be compatible with the powdery mildew scoring results previously carried out on these genotypes. NRG-146 and NRG-195 genotypes; Ren1, Ren3, Ren9, NRG-7; Ren3 and Ren9, NRG-183 and NRG-196; Ren9, NRG-197; Ren1, Ren9 and NRG-200 genotypes gave bands (+) with respect to the Ren1 and Ren3 locus. In recent years, interest in the study of powdery mildew resistance genes or loci has increased and new resistance genes or locus have been discovered. Studies of the genes responsible for powdery mildew resistance and their mechanisms of action at the resistance locus are crucial to developing grape varieties that naturally carry resistance genes and reducing pesticide use.

Project Number

2022/09

References

  • Agurto, M., Schlechter, R.O., Armijo, G., Solano, E., Serrano, C., Contreras, R.A., Zúñiga, G.E., Arce-Johnson, P. 2017. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front. Plant Sci. 8: 758.
  • Akkurt, M., Şenses, İ., Aktürk, B., Tozlu, İ., Özer, N., & Uzun, H. 2022. Marker assisted selection (MAS) for downy mildew resistance in grapevines using Rpv3. 1 associated markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50: 1.
  • Akkurt, M., Welter, L., Maul, E., Töpfer, R., Zyprian, E. 2007. Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Molecular Breeding, 19 (2), 103-111.
  • Alfonzo, A., Lo Piccolo, S., Conigliaro, G., Ventorino, V., Burruano, S., & Moschetti, G. 2012. Antifungal peptides produced by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens. Annals of Microbiology, 62 (4), 1593-1599.
  • Alleweldt, G., & Possingham, J. V. 1988. Progress in grapevine breeding. Theoretical and Applied Genetics, 75, 669-673.
  • Belpoggi, F., Soffritti, M., Guarino, M., Lambertini, L., Cevolani, D., Maltoni, C. 2006. Results of Long-Term Experimental Studies on the Carcinogenicity of Ethylene-Bis-Dithiocarbamate (Mancozeb) in Rats. Ann. N. Y. Acad. Sci. 982: 123-136.
  • Bozkurt, 2023. Sarmalık yaprak üretimine yönelik küllemeye toleranslı yeni üzüm çeşitlerinin geliştirilmesi (Doktora Tezi), Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, Bağ Yetiştirme ve Islahı Bilim Dalı, Tokat.
  • Burger, P., Bouquet, A., Striem, M. J. 2009. Grape breeding. Breeding plantation tree crops: Tropical species, 161-189.
  • Dalbó, M.A., Ye, G.N., Weeden, N.F., Wilcox, W.F., Reisch, B.I. 2001. Marker-assisted selection for powdery mildew resistance in grapes. J. Am. Soc. Hortic. Sci., 12:, 83-89.
  • Di Gaspero, G., Foria, S. 2015. Molecular grapevine breeding techniques. In Grapevine breeding programs for the wine industry. Woodhead Publishing, 23-37.
  • Doster, M. A., & Schnathorst, W. C. 1985. Comparative susceptibility of various grapevine cultivars to the powdery mildew fungus Uncinula necator. American Journal of Enology and Viticulture, 36 (2), 101-104.
  • Dumitriu, G.-D.; Teodosiu, C.; Cotea, V.V. 2021. Management of pesticides from vineyard to wines: Focus on wine safety and pesticides removal by emerging technologies. In Grapes and Wine; IntechOpen: London, UK,pp. 1-27.
  • Eibach, R., Töpfer, R. 2015. Traditional grapevine breeding techniques. In Grapevine breeding programs for the wine industry. Woodhead Publishing, 3-22.
  • Einset, J. and Pratt, C. 1975. Grapes. In: Advances in Fruit Breeding. J. Janick and J. N. Moore (Eds.), Purdue University Press, West Lafayette, Indiana, pp. 130-153.
  • Feechan, A.; Kabbara, S. 2011. Dry, I.B. Mechanisms of powdery mildew resistance in the Vitaceae family. Mol. Plant Pathol., 12: 263-274.
  • Fischer, B.M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K.J., Töpfer, R., Zyprian, E.M. 2004. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet. 108: 501-515.
  • Gadoury, D.M.; Seem, R.C.; Ficke, A.; Wilcox, W.F. 2003. Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93: 547-555.
  • Galet, P. 1998. Grape Varieties and Rootstock Varieties. Oenopluromedia, Chaintré, France.
  • Grando, M.S., Bellin, D., Edwards, K.J., Pozzi, C., Stefanini, M., and Velasco, R. 2003. Molecular linkage maps of Vitis vinifera L. and Vitis riparia Michx. Theor. Appl. Genet. 106: 1213-1224.
  • Halleen, F., Holz, G., 2001. An overview of the biology, epidemiology and control of Uncinula necator (powdery mildew) on grapevine, with reference to South Africa. S. Afr. J. Enol. Vitic. 22: 111-121.
  • Komárek, M., Cˇ adková, E., Chrastný, V., Bordas, F., Bollinger, J.C. 2010. Contamination of vineyard Soils with fungicides: A review of environmental and toxicological aspects. Environ. Int., 36: 138-151.
  • Marino, R., Sevini, F., Madini, A., Vecchione, A., Pertot, I., Serra, A.D., Versini, G., Velasco, R., and Grando, M.S. 2003. QTL mapping for disease resistance and fruit quality in grape. Acta Hortic, 603: 527-533.
  • Michelmore, R.W., I. Paran, and R.V. Kesseli. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832.
  • Monteiro, F., Sebastiana, M., Pais, M. S., & Figueiredo, A. 2013. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. PloS one, 8 (9), e72998.
  • Pandey, A., Jaiswar, S., Ansari, N.; Deo, S., Sankhwar, P., Pant, S., Upadhyay, S. 2020. Pesticide risk and recurrent pregnancy loss in Females of subhumid region of India. Niger Med. J., 61: 55.
  • Pap, D., Riaz, S., Dry, I.B., Jermakow, A., Tenscher, A.C., Cantu, D., Oláh, R., Walker, M.A. 2016. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol., 16: 170.
  • Pauquet, J., Bouquet, A., This, P., and Adam-Blondon, A.F. 2001. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor. Appl. Genet. 103. 1201-1210.
  • Pearson, R.C. and Gadoury, D.M. 1992. Grape powdery mildew. In: Plant Diseases of International Importance, Vol. III. Diseases of Fruit Crops ( J. Kumar, H.S. Chaube, U.S. Singh and A.N. Mukhopadhyay, eds), pp. 129–146. Englewood Cliffs, NJ: Prentice Hall.
  • Piccolo SL, Alfonzo A, Conigliaro G, Moschetti G, Burruano S, Barone A. 2012. A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. Afr J Biotechnol 11 (45), 10305-10309.
  • Pozharskiy, A. S., Aubakirova, K. P., Gritsenko, D. A., Tlevlesov, N. I., Karimov, N. Z., Galiakparov, N. N., Ryabushkina, N. A. 2020. Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genetics and Molecular Research, 19 (1), 18482-18482.
  • Riaz, S., Boursiquot, J.M., Dangl, G.S., Lacombe. T., et al., 2013. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol. 13: 149.
  • Riaz, S.; Tenscher, A.C.; Ramming, D.W.; Walker, M.A. 2011. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor. Appl. Genet., 122: 1059-1073.
  • Salotti, I., Bove, F., & Rossi, V. 2022. Field evaluation of grapevines resistant to downy and powdery mildews. In BIO Web of Conferences (Vol. 50, p. 02003). EDP Sciences.
  • Shidfar, M. 2014. Moleküler Markörlerin Bağcılıkta Külleme ve Mildiyö Hastalıklarına Dayanıklı Çeşit Islahında, Marköre Dayalı Seleksiyon (Marker Assisted Selection-Mas) Amaçlı Kullanılması (Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Ankara.
  • Sosa-Zuniga, V., Vidal Valenzuela, Á., Barba, P., Espinoza Cancino, C., Romero-Romero, J. L., Arce-Johnson, P. 2022. Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens, 11 (6), 703.
  • Vezzulli, S., Dolzani, C., Nicolini, D., Bettinelli, P., Migliaro, D., Gratl, V., Stedile, T., Zatelli, A., Dallaserra, M., Clementi, S., ve ark. 2019. Marker-assisted breeding for downy mildew, powdery mildew and phylloxera resistance at FEM. BIO Web Conf., 13, 01002.Vitis International Variety Catalogue. https://www.vivc.de/
  • Yıldırım, Z., Atak, A., Akkurt, M. 2019. Determination of downy and powdery mildew resistance of some Vitis spp. Ciência e Técnica Vitivinícola, 34 (1), 15-24.
  • Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., ... & Töpfer, R. 2016. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291 (4), 1573-1594.
  • Zyprian, E.; Eibach, R.; Töpfer, R.; 2002: Comparative Molecular Mapping of Fungal Disease Resistance Factors in Segregating Populations of Grapevine, 73-78. Proc. VIIIth Int. Conf. Grape Genet. Breed., Kecskemét, Hungary.

Bazı Melez Asma Genotiplerinin Küllemeye Duyarlılıklarının Küllemeye Dayanıklılıkla İlişkili Bazı Markörler ile İncelenmesi

Year 2024, , 506 - 513, 30.04.2024
https://doi.org/10.30910/turkjans.1454926

Abstract

Bu çalışma 2022-2023 yılları arasında Tokat Gaziosmapaşa Üniversitesi, Tarımsal Uygulama ve Araştırma Merkezine ait seralarda yürütülmüştür. Çalışmada 6 adet Narince × Kishmish Vatkana (NKV) ve 66 adet Narince × Regent (NRG) melezi Ren1, Ren3 ve Ren9 lokusları yönünden MAS yöntemiyle küllemeye dayanıklılıkla ilişkili markörler ile taranmıştır. PCR amplifikasyon ürünleri agaroz jel üzerinde görüntülenerek, örnekler bant var (+) bant yok (-) olarak incelenmiştir. Çalışma sonucunda; genlerin bant görüntü sonuçları genotipler arasında değişkenlik göstermiştir. NRG-7, NRG-146, NRG-183, NRG-195, NRG-196, NRG-197 ve NRG-200 genotiplerinin bant görüntü sonuçları, bu genotiplerde daha önce yapılmış olan külleme skorlamaları sonuçları ile uyumlu tespit edilmiştir. NRG-146 ve NRG-195 genotipleri; Ren1, Ren3, Ren9, NRG-7; Ren3 ve Ren9, NRG-183 ve NRG-196; Ren9, NRG-197; Ren1, Ren9, ve NRG-200 genotipi Ren1 ve Ren3 lokusları bakımından bant (+) vermiştir. Son yıllarda, küllemeye karşı direnç genleri veya lokuslarının araştırılmasına olan ilgi artmış ve yeni direnç genleri veya lokusları keşfedilmiştir. Ren lokuslarında, külleme direncinden ve bunların etki mekanizmalarından hangi genlerin sorumlu olduğuna yönelik çalışmalar doğal olarak direnç genleri taşıyan üzüm çeşitlerinin geliştirilmesi, pestisit kullanımının azaltılması bakımından hayati derecede önem taşımaktadır.

Ethical Statement

Çalışmamız için ‘’Etik Kurul Belgesine’’ ihtiyaç yoktur.

Supporting Institution

Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Fonu Başkanlığı

Project Number

2022/09

Thanks

Bu çalışma Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Fonu Başkanlığı tarafından 2022/09 nolu proje ile desteklenmiştir. Desteklerinden dolayı teşekkür ederiz.

References

  • Agurto, M., Schlechter, R.O., Armijo, G., Solano, E., Serrano, C., Contreras, R.A., Zúñiga, G.E., Arce-Johnson, P. 2017. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front. Plant Sci. 8: 758.
  • Akkurt, M., Şenses, İ., Aktürk, B., Tozlu, İ., Özer, N., & Uzun, H. 2022. Marker assisted selection (MAS) for downy mildew resistance in grapevines using Rpv3. 1 associated markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50: 1.
  • Akkurt, M., Welter, L., Maul, E., Töpfer, R., Zyprian, E. 2007. Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Molecular Breeding, 19 (2), 103-111.
  • Alfonzo, A., Lo Piccolo, S., Conigliaro, G., Ventorino, V., Burruano, S., & Moschetti, G. 2012. Antifungal peptides produced by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens. Annals of Microbiology, 62 (4), 1593-1599.
  • Alleweldt, G., & Possingham, J. V. 1988. Progress in grapevine breeding. Theoretical and Applied Genetics, 75, 669-673.
  • Belpoggi, F., Soffritti, M., Guarino, M., Lambertini, L., Cevolani, D., Maltoni, C. 2006. Results of Long-Term Experimental Studies on the Carcinogenicity of Ethylene-Bis-Dithiocarbamate (Mancozeb) in Rats. Ann. N. Y. Acad. Sci. 982: 123-136.
  • Bozkurt, 2023. Sarmalık yaprak üretimine yönelik küllemeye toleranslı yeni üzüm çeşitlerinin geliştirilmesi (Doktora Tezi), Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, Bağ Yetiştirme ve Islahı Bilim Dalı, Tokat.
  • Burger, P., Bouquet, A., Striem, M. J. 2009. Grape breeding. Breeding plantation tree crops: Tropical species, 161-189.
  • Dalbó, M.A., Ye, G.N., Weeden, N.F., Wilcox, W.F., Reisch, B.I. 2001. Marker-assisted selection for powdery mildew resistance in grapes. J. Am. Soc. Hortic. Sci., 12:, 83-89.
  • Di Gaspero, G., Foria, S. 2015. Molecular grapevine breeding techniques. In Grapevine breeding programs for the wine industry. Woodhead Publishing, 23-37.
  • Doster, M. A., & Schnathorst, W. C. 1985. Comparative susceptibility of various grapevine cultivars to the powdery mildew fungus Uncinula necator. American Journal of Enology and Viticulture, 36 (2), 101-104.
  • Dumitriu, G.-D.; Teodosiu, C.; Cotea, V.V. 2021. Management of pesticides from vineyard to wines: Focus on wine safety and pesticides removal by emerging technologies. In Grapes and Wine; IntechOpen: London, UK,pp. 1-27.
  • Eibach, R., Töpfer, R. 2015. Traditional grapevine breeding techniques. In Grapevine breeding programs for the wine industry. Woodhead Publishing, 3-22.
  • Einset, J. and Pratt, C. 1975. Grapes. In: Advances in Fruit Breeding. J. Janick and J. N. Moore (Eds.), Purdue University Press, West Lafayette, Indiana, pp. 130-153.
  • Feechan, A.; Kabbara, S. 2011. Dry, I.B. Mechanisms of powdery mildew resistance in the Vitaceae family. Mol. Plant Pathol., 12: 263-274.
  • Fischer, B.M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K.J., Töpfer, R., Zyprian, E.M. 2004. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet. 108: 501-515.
  • Gadoury, D.M.; Seem, R.C.; Ficke, A.; Wilcox, W.F. 2003. Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93: 547-555.
  • Galet, P. 1998. Grape Varieties and Rootstock Varieties. Oenopluromedia, Chaintré, France.
  • Grando, M.S., Bellin, D., Edwards, K.J., Pozzi, C., Stefanini, M., and Velasco, R. 2003. Molecular linkage maps of Vitis vinifera L. and Vitis riparia Michx. Theor. Appl. Genet. 106: 1213-1224.
  • Halleen, F., Holz, G., 2001. An overview of the biology, epidemiology and control of Uncinula necator (powdery mildew) on grapevine, with reference to South Africa. S. Afr. J. Enol. Vitic. 22: 111-121.
  • Komárek, M., Cˇ adková, E., Chrastný, V., Bordas, F., Bollinger, J.C. 2010. Contamination of vineyard Soils with fungicides: A review of environmental and toxicological aspects. Environ. Int., 36: 138-151.
  • Marino, R., Sevini, F., Madini, A., Vecchione, A., Pertot, I., Serra, A.D., Versini, G., Velasco, R., and Grando, M.S. 2003. QTL mapping for disease resistance and fruit quality in grape. Acta Hortic, 603: 527-533.
  • Michelmore, R.W., I. Paran, and R.V. Kesseli. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832.
  • Monteiro, F., Sebastiana, M., Pais, M. S., & Figueiredo, A. 2013. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. PloS one, 8 (9), e72998.
  • Pandey, A., Jaiswar, S., Ansari, N.; Deo, S., Sankhwar, P., Pant, S., Upadhyay, S. 2020. Pesticide risk and recurrent pregnancy loss in Females of subhumid region of India. Niger Med. J., 61: 55.
  • Pap, D., Riaz, S., Dry, I.B., Jermakow, A., Tenscher, A.C., Cantu, D., Oláh, R., Walker, M.A. 2016. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol., 16: 170.
  • Pauquet, J., Bouquet, A., This, P., and Adam-Blondon, A.F. 2001. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor. Appl. Genet. 103. 1201-1210.
  • Pearson, R.C. and Gadoury, D.M. 1992. Grape powdery mildew. In: Plant Diseases of International Importance, Vol. III. Diseases of Fruit Crops ( J. Kumar, H.S. Chaube, U.S. Singh and A.N. Mukhopadhyay, eds), pp. 129–146. Englewood Cliffs, NJ: Prentice Hall.
  • Piccolo SL, Alfonzo A, Conigliaro G, Moschetti G, Burruano S, Barone A. 2012. A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. Afr J Biotechnol 11 (45), 10305-10309.
  • Pozharskiy, A. S., Aubakirova, K. P., Gritsenko, D. A., Tlevlesov, N. I., Karimov, N. Z., Galiakparov, N. N., Ryabushkina, N. A. 2020. Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genetics and Molecular Research, 19 (1), 18482-18482.
  • Riaz, S., Boursiquot, J.M., Dangl, G.S., Lacombe. T., et al., 2013. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol. 13: 149.
  • Riaz, S.; Tenscher, A.C.; Ramming, D.W.; Walker, M.A. 2011. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor. Appl. Genet., 122: 1059-1073.
  • Salotti, I., Bove, F., & Rossi, V. 2022. Field evaluation of grapevines resistant to downy and powdery mildews. In BIO Web of Conferences (Vol. 50, p. 02003). EDP Sciences.
  • Shidfar, M. 2014. Moleküler Markörlerin Bağcılıkta Külleme ve Mildiyö Hastalıklarına Dayanıklı Çeşit Islahında, Marköre Dayalı Seleksiyon (Marker Assisted Selection-Mas) Amaçlı Kullanılması (Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Ankara.
  • Sosa-Zuniga, V., Vidal Valenzuela, Á., Barba, P., Espinoza Cancino, C., Romero-Romero, J. L., Arce-Johnson, P. 2022. Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens, 11 (6), 703.
  • Vezzulli, S., Dolzani, C., Nicolini, D., Bettinelli, P., Migliaro, D., Gratl, V., Stedile, T., Zatelli, A., Dallaserra, M., Clementi, S., ve ark. 2019. Marker-assisted breeding for downy mildew, powdery mildew and phylloxera resistance at FEM. BIO Web Conf., 13, 01002.Vitis International Variety Catalogue. https://www.vivc.de/
  • Yıldırım, Z., Atak, A., Akkurt, M. 2019. Determination of downy and powdery mildew resistance of some Vitis spp. Ciência e Técnica Vitivinícola, 34 (1), 15-24.
  • Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., ... & Töpfer, R. 2016. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291 (4), 1573-1594.
  • Zyprian, E.; Eibach, R.; Töpfer, R.; 2002: Comparative Molecular Mapping of Fungal Disease Resistance Factors in Segregating Populations of Grapevine, 73-78. Proc. VIIIth Int. Conf. Grape Genet. Breed., Kecskemét, Hungary.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Research Article
Authors

Abdurrahim Bozkurt 0000-0001-7315-202X

Adem Yağcı 0000-0002-3650-4679

Project Number 2022/09
Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date March 18, 2024
Acceptance Date April 18, 2024
Published in Issue Year 2024

Cite

APA Bozkurt, A., & Yağcı, A. (2024). Bazı Melez Asma Genotiplerinin Küllemeye Duyarlılıklarının Küllemeye Dayanıklılıkla İlişkili Bazı Markörler ile İncelenmesi. Turkish Journal of Agricultural and Natural Sciences, 11(2), 506-513. https://doi.org/10.30910/turkjans.1454926