Research Article
BibTex RIS Cite

Fosfor Çözücü Fungus Talaromyces funiculosus’un Kitlesel Üretimine Temel Teşkil Edecek Bazı Biyolojik Parametrelerin Belirlenmesi

Year 2024, , 974 - 985, 12.10.2024
https://doi.org/10.30910/turkjans.1495070

Abstract

Fosfor bitkilerin gelişim için ihtiyaç duyduğu temel besin elementlerinden bir tanesidir. Tarımsal üretim sırasında, bitkilerin fosfor ihtiyacı kimyasal gübrelerle kaşılanmaktadır. Kimsayasal gübre olarak toprağa verilen fosforun çok önemli bir bölümü toprakta bulunan demir, çinko, alüminyum gibi diğer toprak elementlerine bağlanarak bitkilerin alamayacağı forma dönüşmektedir. Asidik topraklarda bu bağlı fosfor kısmen çözülebilmekte iken, Türkiye gibi topraklarının çok önemli bir bölümü bazik karakterde olan bölgelerde bu çözünme çok yavaş olmaktadır. Bu durum her yıl tekrar fosforlu gübre takviyesi gereksinimine yol açmaktadır. Bazı fungus ve bakteriler ürettikleri bazı kimysalallar ile toprakta bulunan bağlı fosforun bitkiler için faydalı hale dönüşmesine yardımcı olmaktadırlar. Bu çalışma kapsamında, antepfıstığı köklerinden izole edilen, toprakta bağlı fosforu çözme yeteneğine sahip olduğu bilinen bir Talaromyces funiculosus (ST976) izolatının kitlesel üretimine temel teşkil edecek bazı biyolojik parametlerin ortaya konulması amaçlanmıştır. Bu amaçla fungusun farklı sıcaklık ve su aktivitesi değerlerinde gelişim performansları değerlendirilmiştir. Denemeler sonunda fungusun en iyi gelişim gösterdiği sıcaklık değerinin 25 oC ve %99 su aktivitesi değerleri olduğu belirlenmiştir.

Ethical Statement

Sunulan makale kapsamında gerçekleştirilen çalışmalar Etik Kurul İzni gerektirmemektedir.

References

  • Anderson, A. J., & Kim, Y. C. (2018). Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection, 105, 62-69.
  • Baeshen, A.A. (2016). “Use of Pseudomonas aeruginosa as Fertilizer in Eruca sativa, International Journal of Current Microbiology and Applied Sciences, 5(10): 301-312 pp.
  • Barroso, C. B., Pereira, G. T., & Nahas, E. (2006). Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Brazilian Journal of Microbiology, 37, 434-438.
  • Basu, S., Rabara, R., & Negi, S. (2017). Towards a better greener future-an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, 43-49.
  • Borkar, S. G. (2015). Microbes as bio-fertilizers and their production technology. Woodhead Publishing India Pvt, Ltd., 218p.
  • Dwivedi, B. S., Singh, V. K., & Meena, M. C. (2017). Efficient nitrogen management under predominant cropping systems of India. In The Indian Nitrogen Assessment (pp. 95-115). Elsevier.
  • Food and Agriculture Organization of the United States (FAO), www.faostat.org (04.10.2023).
  • Gaur, A. C. (1990). Phosphate solubilizing micro-organisms as biofertilizer. Omega scientific publishers.
  • Gekas, V., Gonzalez, C., Sereno, A., Chiralt, A., & Fito, P. (1998). Mass transfer properties of osmotic solutions. I. Water activity and osmotic pressure. International Journal of Food Properties, 1(2), 95-112. http://dx.doi.org/10.1080/10942919809524570
  • Gosal, S. K., Kaur, J., & Kaur, J. (2020). Microbial biotechnology: a key to sustainable agriculture. Phyto-Microbiome in Stress Regulation, 219-243.
  • Houbraken, J., de Vries, R. P., & Samson, R. A. (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in applied microbiology, 86, 199-249.
  • Isbelia, R., Louis, B., Simard, R.R., Phillipe, T., Hani, A. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 28(3), 291-295. https://doi.org/10.1016/S0168-6496(98)00118-4
  • Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A., & Gadd, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40(1), 65-71.
  • Jain, P., & Pundir, R. K. (2011). Effect of fermentation medium, pH and temperature variations on antibacterial soil fungal metabolite production. J Agric Technol, 7(2), 247-269.
  • Jain, R., Saxena, J., & Sharma, V. (2012). Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Annals of microbiology, 62, 725-735.
  • Kanse, O. S., Whitelaw-Weckert, M., Kadam, T. A., & Bhosale, H. J. (2015). Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere. Annals of Microbiology, 65(1), 85-93. https:// doi.org/10.1007/s13213-014-0839-6.
  • Khan, A. L., Hamayun, M., Kim, Y. H., Kang, S. M., & Lee, I. J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852-861.
  • Kotan, R. (2020). Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. s.158.
  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259-266.
  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259-266.
  • Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32.
  • Mendes, G.D.O., Freitas, A.L.M., Pereira, O.L., Silva, I.R., Vassilev, N.B., & Costa, M.D. (2014). Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. AnnMicrobiol., 64(1): 239–249. https://doi.org/10.1007/s13213-013-0656-3
  • Merlin, J. N., Christhudas, I. V. S. N., Kumar, P. P., & Agastian, P. (2013). Optimization of growth and bioactive metabolite production: Fusarium solani. Asian J Pharm Clin Res, 6(3), 98-103.
  • Mukhtar, I., Quan, X., Chou, T., Huang, Q., Yan, J., Chen, B., ... & Xie, B. (2019). First report of Talaromyces funiculosus causing fruit core rot of peach (Prunus persica) in China. Plant disease, 103(8), 2124. https://doi.org/10.1094/PDIS-11-18-2050-PDN.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. Mustafa, Z., Akkaya, M., & Olmez, F. (2022). Use of ImageJ Image Processing Software in Fungal Growth Tracking. IV. Balkan Agricultural Congress, 31 August – 02 September 2022, Edirne, Turkey.
  • Naraghi, L., Heydari, A., Rezaee, S., & Razavi, M. (2012). Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation, 31, 471-477.
  • Narsian, V., & Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32(4), 559-565.
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological research, 209, 21-32.
  • Osorio, N. W., & Habte, M. (2001). Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Research and Management, 15(3), 263-274.
  • Pereira, E., Santos, A., Reis, F., Tavares, R. M., Baptista, P., Lino-Neto, T., & Almeida-Aguiar, C. (2013). A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiological research, 168(1), 1-5.
  • Pitt, J. I., & Hocking, A. D. (1977). Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. Microbiology, 101(1), 35-40.
  • Pradhan, N., & Sukla, L. B. (2006). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology, 5(10).
  • Relwani, L., Krishna, P., & Sudhakara Reddy, M. (2008). Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Current microbiology, 57, 401-406.
  • Roos, W., & Luckner, M. (1984). Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Microbiology, 130(4), 1007-1014.
  • Sahoo, H. R., & Gupta, N. (2014). Phosphate-solubilizing fungi: impact on growth and development of economically important plants. Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology, 87-111.
  • Scervino, J. M., Mesa, M. P., Della Mónica, I., Recchi, M., Sarmiento Moreno, N., & Godeas, A. (2010). Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and fertility of soils, 46, 755-763.
  • Scervino, J. M., Papinutti, V. L., Godoy, M. S., Rodriguez, M. A., Della Monica, I., Recchi, M., ... & Godeas, A. M. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of applied microbiology, 110(5), 1215-1223.
  • Seshadri, S., Ignacimuthu, S., & Lakshminarasimhan, C. (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chemical Engineering Communications, 191(8), 1043-1052.
  • Seshadri, S., Ignacimuthu, S., & Lakshminarasimhan, C. (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chemical Engineering Communications, 191(8), 1043-1052.
  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 1-14. https://doi.org/10.1186/2193-1801-2-587 PMID: 25674415
  • Singal, R., Gupta, R., & Saxena, R. K. (1994). Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus. Folia microbiologica, 39, 33-36.
  • Singh, D. P., Prabha, R., & Gupta, V. K. (2019). Microbial inoculants for sustainable crop management. Microbial Interventions in Agriculture and Environment: Volume 2: Rhizosphere, Microbiome and Agro-ecology, 1-35.
  • Sönmez, İ., Kaplan, M., & Sönmez, S. (2008). Kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Derim, 25(2), 24-34.
  • Srividya, S., Soumya, S., & Pooja, K. (2009). Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. African Journal of Biotechnology, 8(9).
  • Sun, B. D., Chen, A. J., Houbraken, J., Frisvad, J. C., Wu, W. P., Wei, H. L., ... & Samson, R. A. (2020). New section and species in Talaromyces. MycoKeys, 68, 75–113.
  • Tiryaki, O., Canhilal, R., & Horuz, S., 2010. Tarım ilaçları kullanımı ve riskleri. Erciyes üniversitesi fen bilimleri enstitüsü fen bilimleri dergisi, 26(2), 154-169.
  • Türkölmez, Ş., Abdullah, E. R. E. N., Göksel, Ö. Z. E. R., & Derviş, S. (2022). The effect of Talaromyces funiculosus ST976 isolated from pistacia vera rhizosphere on phosphorus solubility in soil samples with different physicochemical properties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(5), 1077-1085.
  • Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied microbiology and biotechnology, 71, 137-144.
  • Wang, M., Li, Z., Fang, X., Wang, L., & Qu, Y. (2012). Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Biotechnology in China III: biofuels and bioenergy, 1-24. https://doi.org/10.1007/10_2011_131.
  • Whitelaw, M. A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in agronomy, 69, 99-151.
  • Whitelaw, M. A., Harden, T. J., & Helyar, K. R. (1999). Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil biology and biochemistry, 31(5), 655-665.
  • Yadav, J., Verma, J. P., & Tiwari, K. N. (2011). Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity. Trends in Applied Sciences Research, 6(6), 606.
  • Yilmaz, N., Visagie, C. M., Houbraken, J., Frisvad, J. C., & Samson, R. A. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78, 175-341. https://doi.org/10.1016/j. simyco.2014.08.001
  • Zaidi, A., & Khan, M. S. (2007). Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture, 47(8), 1016-1022.

Determination of some Biological Parameters Providing the Basis for the Mass Production of the Phosphorus Solving Fungi Talaromyces funiculosus

Year 2024, , 974 - 985, 12.10.2024
https://doi.org/10.30910/turkjans.1495070

Abstract

Phosphorus is one of the basic nutritional elements that plants need for development. During agricultural production, the phosphorus needs of plants are met with chemical fertilizers. A very significant part of the phosphorus given to the soil as chemical fertilizer binds to other soil elements such as iron, zinc and aluminum in the soil and turns into a form that plants cannot absorb. While this bound phosphorus can be partially dissolved in acidic soils, this dissolution is very slow in regions such as Turkey, where a significant part of the soil is basic. This situation leads to the need for phosphorus fertilizer supplements every year. Some fungi and bacteria help convert the bound phosphorus in the soil into something useful for plants with the chemicals they produce. Within the scope of this study, it was aimed to reveal some biological parameters that will form the basis for the mass production of a Talaromyces funiculosus (ST976) isolate isolated from pistachio roots and known to have the ability to dissolve phosphorus bound in soil. For this purpose, the growth performances of the fungus at different temperature and water activity values were evaluated. At the end of the experiments, it was determined that the temperature at which the fungus developed best was 25 oC and 99,5% and 99% water activity.

References

  • Anderson, A. J., & Kim, Y. C. (2018). Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection, 105, 62-69.
  • Baeshen, A.A. (2016). “Use of Pseudomonas aeruginosa as Fertilizer in Eruca sativa, International Journal of Current Microbiology and Applied Sciences, 5(10): 301-312 pp.
  • Barroso, C. B., Pereira, G. T., & Nahas, E. (2006). Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Brazilian Journal of Microbiology, 37, 434-438.
  • Basu, S., Rabara, R., & Negi, S. (2017). Towards a better greener future-an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, 43-49.
  • Borkar, S. G. (2015). Microbes as bio-fertilizers and their production technology. Woodhead Publishing India Pvt, Ltd., 218p.
  • Dwivedi, B. S., Singh, V. K., & Meena, M. C. (2017). Efficient nitrogen management under predominant cropping systems of India. In The Indian Nitrogen Assessment (pp. 95-115). Elsevier.
  • Food and Agriculture Organization of the United States (FAO), www.faostat.org (04.10.2023).
  • Gaur, A. C. (1990). Phosphate solubilizing micro-organisms as biofertilizer. Omega scientific publishers.
  • Gekas, V., Gonzalez, C., Sereno, A., Chiralt, A., & Fito, P. (1998). Mass transfer properties of osmotic solutions. I. Water activity and osmotic pressure. International Journal of Food Properties, 1(2), 95-112. http://dx.doi.org/10.1080/10942919809524570
  • Gosal, S. K., Kaur, J., & Kaur, J. (2020). Microbial biotechnology: a key to sustainable agriculture. Phyto-Microbiome in Stress Regulation, 219-243.
  • Houbraken, J., de Vries, R. P., & Samson, R. A. (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in applied microbiology, 86, 199-249.
  • Isbelia, R., Louis, B., Simard, R.R., Phillipe, T., Hani, A. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 28(3), 291-295. https://doi.org/10.1016/S0168-6496(98)00118-4
  • Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A., & Gadd, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40(1), 65-71.
  • Jain, P., & Pundir, R. K. (2011). Effect of fermentation medium, pH and temperature variations on antibacterial soil fungal metabolite production. J Agric Technol, 7(2), 247-269.
  • Jain, R., Saxena, J., & Sharma, V. (2012). Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Annals of microbiology, 62, 725-735.
  • Kanse, O. S., Whitelaw-Weckert, M., Kadam, T. A., & Bhosale, H. J. (2015). Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere. Annals of Microbiology, 65(1), 85-93. https:// doi.org/10.1007/s13213-014-0839-6.
  • Khan, A. L., Hamayun, M., Kim, Y. H., Kang, S. M., & Lee, I. J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852-861.
  • Kotan, R. (2020). Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. s.158.
  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259-266.
  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259-266.
  • Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32.
  • Mendes, G.D.O., Freitas, A.L.M., Pereira, O.L., Silva, I.R., Vassilev, N.B., & Costa, M.D. (2014). Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. AnnMicrobiol., 64(1): 239–249. https://doi.org/10.1007/s13213-013-0656-3
  • Merlin, J. N., Christhudas, I. V. S. N., Kumar, P. P., & Agastian, P. (2013). Optimization of growth and bioactive metabolite production: Fusarium solani. Asian J Pharm Clin Res, 6(3), 98-103.
  • Mukhtar, I., Quan, X., Chou, T., Huang, Q., Yan, J., Chen, B., ... & Xie, B. (2019). First report of Talaromyces funiculosus causing fruit core rot of peach (Prunus persica) in China. Plant disease, 103(8), 2124. https://doi.org/10.1094/PDIS-11-18-2050-PDN.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. Mustafa, Z., Akkaya, M., & Olmez, F. (2022). Use of ImageJ Image Processing Software in Fungal Growth Tracking. IV. Balkan Agricultural Congress, 31 August – 02 September 2022, Edirne, Turkey.
  • Naraghi, L., Heydari, A., Rezaee, S., & Razavi, M. (2012). Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation, 31, 471-477.
  • Narsian, V., & Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32(4), 559-565.
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological research, 209, 21-32.
  • Osorio, N. W., & Habte, M. (2001). Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Research and Management, 15(3), 263-274.
  • Pereira, E., Santos, A., Reis, F., Tavares, R. M., Baptista, P., Lino-Neto, T., & Almeida-Aguiar, C. (2013). A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiological research, 168(1), 1-5.
  • Pitt, J. I., & Hocking, A. D. (1977). Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. Microbiology, 101(1), 35-40.
  • Pradhan, N., & Sukla, L. B. (2006). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology, 5(10).
  • Relwani, L., Krishna, P., & Sudhakara Reddy, M. (2008). Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Current microbiology, 57, 401-406.
  • Roos, W., & Luckner, M. (1984). Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Microbiology, 130(4), 1007-1014.
  • Sahoo, H. R., & Gupta, N. (2014). Phosphate-solubilizing fungi: impact on growth and development of economically important plants. Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology, 87-111.
  • Scervino, J. M., Mesa, M. P., Della Mónica, I., Recchi, M., Sarmiento Moreno, N., & Godeas, A. (2010). Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and fertility of soils, 46, 755-763.
  • Scervino, J. M., Papinutti, V. L., Godoy, M. S., Rodriguez, M. A., Della Monica, I., Recchi, M., ... & Godeas, A. M. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of applied microbiology, 110(5), 1215-1223.
  • Seshadri, S., Ignacimuthu, S., & Lakshminarasimhan, C. (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chemical Engineering Communications, 191(8), 1043-1052.
  • Seshadri, S., Ignacimuthu, S., & Lakshminarasimhan, C. (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chemical Engineering Communications, 191(8), 1043-1052.
  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 1-14. https://doi.org/10.1186/2193-1801-2-587 PMID: 25674415
  • Singal, R., Gupta, R., & Saxena, R. K. (1994). Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus. Folia microbiologica, 39, 33-36.
  • Singh, D. P., Prabha, R., & Gupta, V. K. (2019). Microbial inoculants for sustainable crop management. Microbial Interventions in Agriculture and Environment: Volume 2: Rhizosphere, Microbiome and Agro-ecology, 1-35.
  • Sönmez, İ., Kaplan, M., & Sönmez, S. (2008). Kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Derim, 25(2), 24-34.
  • Srividya, S., Soumya, S., & Pooja, K. (2009). Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. African Journal of Biotechnology, 8(9).
  • Sun, B. D., Chen, A. J., Houbraken, J., Frisvad, J. C., Wu, W. P., Wei, H. L., ... & Samson, R. A. (2020). New section and species in Talaromyces. MycoKeys, 68, 75–113.
  • Tiryaki, O., Canhilal, R., & Horuz, S., 2010. Tarım ilaçları kullanımı ve riskleri. Erciyes üniversitesi fen bilimleri enstitüsü fen bilimleri dergisi, 26(2), 154-169.
  • Türkölmez, Ş., Abdullah, E. R. E. N., Göksel, Ö. Z. E. R., & Derviş, S. (2022). The effect of Talaromyces funiculosus ST976 isolated from pistacia vera rhizosphere on phosphorus solubility in soil samples with different physicochemical properties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(5), 1077-1085.
  • Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied microbiology and biotechnology, 71, 137-144.
  • Wang, M., Li, Z., Fang, X., Wang, L., & Qu, Y. (2012). Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Biotechnology in China III: biofuels and bioenergy, 1-24. https://doi.org/10.1007/10_2011_131.
  • Whitelaw, M. A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in agronomy, 69, 99-151.
  • Whitelaw, M. A., Harden, T. J., & Helyar, K. R. (1999). Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil biology and biochemistry, 31(5), 655-665.
  • Yadav, J., Verma, J. P., & Tiwari, K. N. (2011). Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity. Trends in Applied Sciences Research, 6(6), 606.
  • Yilmaz, N., Visagie, C. M., Houbraken, J., Frisvad, J. C., & Samson, R. A. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78, 175-341. https://doi.org/10.1016/j. simyco.2014.08.001
  • Zaidi, A., & Khan, M. S. (2007). Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture, 47(8), 1016-1022.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Research Article
Authors

Fatih Ölmez 0000-0001-7016-2708

Hiranur Akdaş 0009-0007-6008-2270

Early Pub Date October 12, 2024
Publication Date October 12, 2024
Submission Date June 3, 2024
Acceptance Date September 5, 2024
Published in Issue Year 2024

Cite

APA Ölmez, F., & Akdaş, H. (2024). Fosfor Çözücü Fungus Talaromyces funiculosus’un Kitlesel Üretimine Temel Teşkil Edecek Bazı Biyolojik Parametrelerin Belirlenmesi. Turkish Journal of Agricultural and Natural Sciences, 11(4), 974-985. https://doi.org/10.30910/turkjans.1495070