Research Article
BibTex RIS Cite

Türkiye’de Farklı Aromatik Bitkilerin Üretilmesinde Sera Gazı Emisyonlarının (GHG) Belirlenmesi

Year 2019, , 90 - 96, 21.01.2019
https://doi.org/10.30910/turkjans.515360

Abstract

Sera gazı
emisyonlarının salınması, Türkiye için büyük bir endişe kaynağıdır. Ancak,
sadece enerji tüketmekle kalmayıp aynı zamanda çevre üzerinde hem olumlu hem de
olumsuz etkileri olabileceği için Türkiye'de tarım çevresel etkilerin en önemli
aktörleri arasında yer almaktadır. Bu çalışma, Türkiye'nin farklı illerinde
dört farklı tıbbi, aromatik ve keyif bitkisinin (guar, lavanta, susam ve tütün)
üretimi sırasında oluşan sera gazı emisyonlarının belirlenmesi amacıyla
yapılmıştır. Bu amaçla ilk veriler referanslardan toplanmıştır. Sonuçta, dört
farklı aromatik bitkinin (guar, lavanta, susam ve tütün) üretimi sırasında
oluşan toplam sera gazı emisyonları sırasıyla 1488.50
kgCO2-eşha–1, 494.81 kgCO2-eşha–1, 907.13 kgCO2-eşha–1 ve 6604.58 kgCO2-eşha–1 olarak, GHG oranları ise sırasıyla 0.65 kgCO2-eşkg–1, 0.10 kgCO2-eşkg–1, 1.88 kgCO2-eşkg–1 ve 6.29 kgCO2-eşkg–1 olarak hesaplanmıştır

References

  • Baran, M.F., Gökdoğan, O. 2015. Determination of energy input-output of Tobacco production in Turkey. American-Eurasian J. Agric. & Environ. Sci., 15 (7): 1346-1350.
  • Baran, M.F., Gökdoğan, O. 2017. Determination of energy use efficiency of Sesame production. Journal of Tekirdag Agricultural Faculty, 14 (3): 73-79.
  • BioGrace-II, 2015. Harmonised Calculations of Biofuel Greenhouse Gas Emissions inEurope. BioGrace, Utrecht, The Netherlands. http://www.biograce.net.
  • Clark, S., Khoshnevisan, B., Sefeedpari, P. 2016. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecological Engineering, 88; 186-194.
  • Garnett, T. 2006. Fruit and Vegetables & UK Greenhouse Gas Emissions: Exploring the Relationship. Working paper produced as part of the work of the food climate research network.
  • Gökdoğan, O. 2016. Determination of input-output energy and economic analysis of lavender production in Turkey. Int J Agric & Biol Eng, 9 (3): 154-161.
  • Gökdoğan, O., Seydosoğlu, S., Kökten, K., Bengü, A.Ş., Baran, M. F. 2017. Energy input-output analysis of guar (Cyamopsis tetragonoloba) and lupin (Lupinus albus L.) production in Turkey Legume Research, 40(3): 526-531.
  • Gresta, F., De Luca, A.I., Strano, A., Falcone, G., Santonoceto, C., Anastasi, U., Gulisano, G. 2014. Economic and environmental sustainability analysis of guar (Cyamopsis tetragonoloba L.) farming process in a Mediterranean area: two case studies. Italian Journal of Agronomy, 9(1): 20-24.
  • Houshyar, E., Dalgaard, T., Tarazgar, M.H., Jorgensen, U. 2015. Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 89: 99-109.
  • Hughes, D.J., West, J.S., Atkins, S.D., Gladders, P., Jeger, M.J., Fitt, B.D. 2011. Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production. Pest Manag Sci, 67: 1082-1092.
  • Khoshnevisan, B., Shariati, H. M., Rafiee, S., Mousazadeh, H. 2014. Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29: 316-324.
  • Lal, R. 2004. Carbon emission from farm operations. Environment International, 30: 981-990.
  • Maraseni, T.N., Cockfield, G., Maroulis, J., Chen, G. 2010. An assessment of greenhouse gas emissions from the Australian vegetables industry. Journal of Environmental Science and Health, Part B, 45(6): 578-588.
  • Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S. 2016. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 15 (1): 38-47.
  • Nguyen, T.L.T., Hermansen, J.E. 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy, 89: 254-261.
  • Pardis, Devakumar, A.S. 2014. Green house gas emission of major agriculture crops of Southern India. 2nd International Conference on Sustainable Environment and Agriculture, IPCBEE, 76: 94-98.
  • Pishgar-Komleh, S.H., Ghahderijani, M., Sefeedpari,P. 2012. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33: 183-191.
  • Sadiq M.S., Singh I.P., Umar S.M., Grema I.J., Usman B.I., Isah M.A. 2016. Global warming and tragedy of the commons: comparative evidence of greenhouse gas emission (CO2) between efficient and ınefficient sesame producers in Jigawa State of Nigeria. International Journal of Tropical Agriculture; 34(1): 135-147.
  • Tongwane, M., Mdlambuzi, T., Moeletsi, M., Tsubo, M., Mliswa, V., Grootboom, L. 2016. Greenhouse gas emissions from different crop production and management practices in South Africa. Environmental Development, 19: 23-35.
  • TUIK, 2018. GHG Emission Statistics. Turkish Statistical Institute Agency Newsletter. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27675 (Date of access: 18.08.2018).
  • Vetter, S.H., Sapkota, T.B. Hillier, J., Stirling, C.M., Macdiarmid, J.I., Aleksandrowicz, L., Green, R., Joy, E.J.M., Dangour, A.D., Smith, P. 2017. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237: 234-241.

Determination of Greenhouse Gas Emissions (GHG) in the Production of Different Aromatic Plants in Turkey

Year 2019, , 90 - 96, 21.01.2019
https://doi.org/10.30910/turkjans.515360

Abstract

The
release of greenhouse gas emissions is a source of great concern for Turkey.
However, agriculture is among the key actors in terms of environmental impact
in Turkey, as agriculture not only consumes energy but it also produces it and
it can have both positive and negative effects on the environment. This study
was conducted in order to determine GHG emissions for four different medical,
aromatic and pleasure plants production (guar, lavender, sesame and tobacco) in
the different provinces of Turkey. For this purpose, the first data was
collected from references. The results indicated that total GHG emissions for
four different aromatic plants production (guar, lavender, sesame and tobacco)
production were computed as 1488.50 kgCO2-eqha–1, 494.81
kgCO2-eqha–1, 907.13 kgCO2-eqha–1,
6604.58 kgCO2-eqha–1 respectively.
The GHG ratios were computed as 0.65 kgCO2-eqkg–1, 0.10
kgCO2-eqkg–1, 1.88 kgCO2-eqkg–1,
6.29 kgCO2-eqkg–1 respectively.

References

  • Baran, M.F., Gökdoğan, O. 2015. Determination of energy input-output of Tobacco production in Turkey. American-Eurasian J. Agric. & Environ. Sci., 15 (7): 1346-1350.
  • Baran, M.F., Gökdoğan, O. 2017. Determination of energy use efficiency of Sesame production. Journal of Tekirdag Agricultural Faculty, 14 (3): 73-79.
  • BioGrace-II, 2015. Harmonised Calculations of Biofuel Greenhouse Gas Emissions inEurope. BioGrace, Utrecht, The Netherlands. http://www.biograce.net.
  • Clark, S., Khoshnevisan, B., Sefeedpari, P. 2016. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecological Engineering, 88; 186-194.
  • Garnett, T. 2006. Fruit and Vegetables & UK Greenhouse Gas Emissions: Exploring the Relationship. Working paper produced as part of the work of the food climate research network.
  • Gökdoğan, O. 2016. Determination of input-output energy and economic analysis of lavender production in Turkey. Int J Agric & Biol Eng, 9 (3): 154-161.
  • Gökdoğan, O., Seydosoğlu, S., Kökten, K., Bengü, A.Ş., Baran, M. F. 2017. Energy input-output analysis of guar (Cyamopsis tetragonoloba) and lupin (Lupinus albus L.) production in Turkey Legume Research, 40(3): 526-531.
  • Gresta, F., De Luca, A.I., Strano, A., Falcone, G., Santonoceto, C., Anastasi, U., Gulisano, G. 2014. Economic and environmental sustainability analysis of guar (Cyamopsis tetragonoloba L.) farming process in a Mediterranean area: two case studies. Italian Journal of Agronomy, 9(1): 20-24.
  • Houshyar, E., Dalgaard, T., Tarazgar, M.H., Jorgensen, U. 2015. Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 89: 99-109.
  • Hughes, D.J., West, J.S., Atkins, S.D., Gladders, P., Jeger, M.J., Fitt, B.D. 2011. Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production. Pest Manag Sci, 67: 1082-1092.
  • Khoshnevisan, B., Shariati, H. M., Rafiee, S., Mousazadeh, H. 2014. Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29: 316-324.
  • Lal, R. 2004. Carbon emission from farm operations. Environment International, 30: 981-990.
  • Maraseni, T.N., Cockfield, G., Maroulis, J., Chen, G. 2010. An assessment of greenhouse gas emissions from the Australian vegetables industry. Journal of Environmental Science and Health, Part B, 45(6): 578-588.
  • Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S. 2016. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 15 (1): 38-47.
  • Nguyen, T.L.T., Hermansen, J.E. 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy, 89: 254-261.
  • Pardis, Devakumar, A.S. 2014. Green house gas emission of major agriculture crops of Southern India. 2nd International Conference on Sustainable Environment and Agriculture, IPCBEE, 76: 94-98.
  • Pishgar-Komleh, S.H., Ghahderijani, M., Sefeedpari,P. 2012. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33: 183-191.
  • Sadiq M.S., Singh I.P., Umar S.M., Grema I.J., Usman B.I., Isah M.A. 2016. Global warming and tragedy of the commons: comparative evidence of greenhouse gas emission (CO2) between efficient and ınefficient sesame producers in Jigawa State of Nigeria. International Journal of Tropical Agriculture; 34(1): 135-147.
  • Tongwane, M., Mdlambuzi, T., Moeletsi, M., Tsubo, M., Mliswa, V., Grootboom, L. 2016. Greenhouse gas emissions from different crop production and management practices in South Africa. Environmental Development, 19: 23-35.
  • TUIK, 2018. GHG Emission Statistics. Turkish Statistical Institute Agency Newsletter. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27675 (Date of access: 18.08.2018).
  • Vetter, S.H., Sapkota, T.B. Hillier, J., Stirling, C.M., Macdiarmid, J.I., Aleksandrowicz, L., Green, R., Joy, E.J.M., Dangour, A.D., Smith, P. 2017. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237: 234-241.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ömer Eren

Osman Gökdoğan This is me

Mehmet Fırat Baran This is me

Publication Date January 21, 2019
Submission Date September 16, 2018
Published in Issue Year 2019

Cite

APA Eren, Ö., Gökdoğan, O., & Baran, M. F. (2019). Determination of Greenhouse Gas Emissions (GHG) in the Production of Different Aromatic Plants in Turkey. Türk Tarım Ve Doğa Bilimleri Dergisi, 6(1), 90-96. https://doi.org/10.30910/turkjans.515360