Research Article
BibTex RIS Cite

In vitro Suppression Effects of Rhizobacteria against Pseudomonas syringae pv. tomato the Agent of Bacterial Speck Disease of Tomato

Year 2020, , 283 - 289, 25.01.2020
https://doi.org/10.30910/turkjans.680101

Abstract

Bacterial speck caused by Pseudomonas syringae pv. tomato is significant pathogen of tomato causing economical losses in yield and quality. Bactericides for the control of such plant diseases are insufficient in some cases. Plant Promote Growth Promoting Rhizobacteria is recently considered as a potential alternative approach to the control of plant pathogens. Here, a collection of bacteria (thirty-eight in total) obtained from rhizospheric soil of different plants were examined for in vitro antagonistic effects on the Pseudomonas syringae pv. tomato growth on agar plates through dual culture assay. Seven isolates out of thirty-eight exhibited effects with varying ranges of inhibition zones from 0.1 to 0.867 cm on the pathogen isolate obtained from Çumra district of Konya. Based on MALDI Biotyper classification results, all of the rhizobacterial isolates showing in vitro antagonistic actions were identified as Bacillus genera, excluding an isolate that was determined as belonged to Paenibacillus genera.

References

  • Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26: 1–20. Alexander, S. A., Kim, S. H., Waldenmaier, C. M. 1999. First report of copper-tolerant Pseudomonas syringae pv. tomato in Virginia. Plant Dis. 83:964.
  • Çakmakçı, R., Dönmez F., Aydın A., Şahin F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry. 38(6):1482-1487.
  • Çınar, Ö., 1977. Akdeniz Bölgesi Domateslerinde görülen bir hastalık. Bitki, 4(2), 282-288.
  • Eastman, A.W., Heinrichs D.E., Yuan Z.C. 2014. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant‑ growth promotion and competitiveness. BMC Genom., 15:851.
  • Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169: 30–39.
  • Imriz G., Özdemir F., Karaca M.S., Taş M.N., Topal İ.,Ercan B. 2020. Biological control potentials of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum (W.G. Smith) in wheat. Zemdirbyste-Agriculture", 107:2
  • Kim, S.G., Khan Z., Jeon Y.H., Kim Y.H. 2009. Inhibitory effect of Paenibacillus polymyxa GBR‑462 on Phytophthora capsici causing phytophthora blight in chili pepper. J Phytopathol., 157:329–37.
  • Kloepper, J.W., Schroth, M.N., 1978. Plant growth promoting rhizobacteria on radishes. Proc. 4th Int. Conf. Plant path. Bact., Angers, pp. 879–882.
  • Lelliot, R. A., Stead, D. E. 1987. Media and methods. in: Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications Inc., Oxford, UK. pp. 169-199.
  • Logan, N.A., Popovic, T., Hoffmaster, A. 2007. Bacillus and other aerobic endospore-forming bacteria. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry & M. A. Pfaller (Eds), Manual of clinical microbiology, pp. 455-473, Washington, DC, USA: AMS Press.
  • Milijašević-Marčić, S., Todorović, B. 2017. Biological control of bacterial pathogens in horticultural systems. In Victor Green (ed.), Bio-control agents: Types, applications and reserarch insights, pp. 1-40, New York, USA: Nova Science Publishers.
  • Milijašević-Marčić, S., Todorović, V., Stanojević, O., Berić, T., Stanković, S., Todorović, B., Potočnik, I., 2018. Antagonistic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper. Pestic. Phytomed., 33(1): 9–18.
  • Mirik, M., Aysan, Y., Çınar, Ö. 2008. Biological Control of Bacterial Spot Disease of Pepper with Bacillus strains, Turk J. Agric. For., 32: 381-390.
  • Nautiyal, C., DasGupta, S.M. 2007. Screening of Plant Growth-Promoting Rhizobacteria. In: Varma A., Oelmüller R. (eds) Advanced Techniques in Soil Microbiology. Soil Biology, vol 11. Springer, Berlin, Heidelberg.
  • Oldroyd, G. E. D., Staskawicz, B. J. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci., 95:10300-10305.
  • Preston, G. M. 2000. Pseudomonas syringae pv. tomato: The right pathogen, of the right plant, at the right time. Mol. Plant Pathol., 1:263-275.
  • Raza, W., Yang, R., Shen, Q.R. 2008. Paenibacillus polymyxa: antibiotic, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90, 419–430.
  • Silva, V. L., da, Lopes, C. A. 1995a. Pseudomonas syringae pv. tomato resistant to streptomycin and oxytetracycline in tomato plants treated or not with agricultural antibiotics. Fitopatol. Bras., 20:80-84.
  • Silva, V. L., da, Lopes, C. A. 1995b. Pseudomonas syringae pv. tomato resistant to copper in copper-sprayed tomato fields. Fitopatol. Bras., 20:85-89.
  • Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857. doi:10.1111/j.1365-2958.2005. 04587.x
  • Weselowski, B., Nathoo, N., Eastman, A.W., MacDonald, J., Yuan, Z.C., 2016. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. Microbiology, 16:24.
  • Wilson, M., Campbell, H. L., Ji, P., Jones, J. B., Cuppels, D. A. 2002. Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology, 92:1284-1292
  • Xie, J., Shi, H., Du, Z., Wang, T., Liu, X., Chen, S. 2016. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci. Rep., 6:21329.

Domates Bakteriyel Benek Hastalığı Etmeni Pseudomonas syringae pv. tomato’nun Üzerinde Rhizobakterilerin In vitro’ da Baskılayıcı Etkileri

Year 2020, , 283 - 289, 25.01.2020
https://doi.org/10.30910/turkjans.680101

Abstract

Pseudomonas syringae pv. tomato’ nun neden olduğu bakteriyel benek domateste verim ve kalitede ekonomik olarak kayıplara neden olan önemli bir patojendir. Bazı durumlarda bu tür bitki hastalıklarının kontrolünde bakterisit uygulamaları yetersiz kalmaktadır. Son zamanlarda bitki patojenlerinin kontrolünde Bitki Büyümesini Destekleyen Rizobakteriler potansiyel bir alternatif yaklaşım olarak görülmektedir. Bu çalışmada, farklı bitkilerin rizosfer toprağından elde edilen bir bakteri koleksiyonunun (otuz sekiz adet), patojen bakterinin besi ortamında büyümesi üzerinde in vitro antagonistik etkileri ikili kültür yöntemi ile belirlenmiştir. Çalışmada kullanılan Pseudomonas syringae pv. tomato izolatı Konya-Çumra’da açık alan üretimi yapılan domates bitkilerinden izole edilmiştir. Otuz sekiz rizobakteriyel izolattan yedi tanesi, besi üzerinde 0.1 ila 0.867 cm arasında değişen inhibisyon zonları oluşturarak Pseudomonas syringae pv. tomato’ ya karşı etkinlik göstermişlerdir. MALDI Biotyper sınıflandırma sonuçlarına göre, Paenibacillus cinsine ait olduğu belirlenen bir izolat dışında in vitro’ da antagonistik etki gösteren rizobakteriyel izolatların tümünün Bacillus cinsine olduğu tespit edilmiştir.

References

  • Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26: 1–20. Alexander, S. A., Kim, S. H., Waldenmaier, C. M. 1999. First report of copper-tolerant Pseudomonas syringae pv. tomato in Virginia. Plant Dis. 83:964.
  • Çakmakçı, R., Dönmez F., Aydın A., Şahin F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry. 38(6):1482-1487.
  • Çınar, Ö., 1977. Akdeniz Bölgesi Domateslerinde görülen bir hastalık. Bitki, 4(2), 282-288.
  • Eastman, A.W., Heinrichs D.E., Yuan Z.C. 2014. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant‑ growth promotion and competitiveness. BMC Genom., 15:851.
  • Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169: 30–39.
  • Imriz G., Özdemir F., Karaca M.S., Taş M.N., Topal İ.,Ercan B. 2020. Biological control potentials of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum (W.G. Smith) in wheat. Zemdirbyste-Agriculture", 107:2
  • Kim, S.G., Khan Z., Jeon Y.H., Kim Y.H. 2009. Inhibitory effect of Paenibacillus polymyxa GBR‑462 on Phytophthora capsici causing phytophthora blight in chili pepper. J Phytopathol., 157:329–37.
  • Kloepper, J.W., Schroth, M.N., 1978. Plant growth promoting rhizobacteria on radishes. Proc. 4th Int. Conf. Plant path. Bact., Angers, pp. 879–882.
  • Lelliot, R. A., Stead, D. E. 1987. Media and methods. in: Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications Inc., Oxford, UK. pp. 169-199.
  • Logan, N.A., Popovic, T., Hoffmaster, A. 2007. Bacillus and other aerobic endospore-forming bacteria. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry & M. A. Pfaller (Eds), Manual of clinical microbiology, pp. 455-473, Washington, DC, USA: AMS Press.
  • Milijašević-Marčić, S., Todorović, B. 2017. Biological control of bacterial pathogens in horticultural systems. In Victor Green (ed.), Bio-control agents: Types, applications and reserarch insights, pp. 1-40, New York, USA: Nova Science Publishers.
  • Milijašević-Marčić, S., Todorović, V., Stanojević, O., Berić, T., Stanković, S., Todorović, B., Potočnik, I., 2018. Antagonistic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper. Pestic. Phytomed., 33(1): 9–18.
  • Mirik, M., Aysan, Y., Çınar, Ö. 2008. Biological Control of Bacterial Spot Disease of Pepper with Bacillus strains, Turk J. Agric. For., 32: 381-390.
  • Nautiyal, C., DasGupta, S.M. 2007. Screening of Plant Growth-Promoting Rhizobacteria. In: Varma A., Oelmüller R. (eds) Advanced Techniques in Soil Microbiology. Soil Biology, vol 11. Springer, Berlin, Heidelberg.
  • Oldroyd, G. E. D., Staskawicz, B. J. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci., 95:10300-10305.
  • Preston, G. M. 2000. Pseudomonas syringae pv. tomato: The right pathogen, of the right plant, at the right time. Mol. Plant Pathol., 1:263-275.
  • Raza, W., Yang, R., Shen, Q.R. 2008. Paenibacillus polymyxa: antibiotic, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90, 419–430.
  • Silva, V. L., da, Lopes, C. A. 1995a. Pseudomonas syringae pv. tomato resistant to streptomycin and oxytetracycline in tomato plants treated or not with agricultural antibiotics. Fitopatol. Bras., 20:80-84.
  • Silva, V. L., da, Lopes, C. A. 1995b. Pseudomonas syringae pv. tomato resistant to copper in copper-sprayed tomato fields. Fitopatol. Bras., 20:85-89.
  • Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857. doi:10.1111/j.1365-2958.2005. 04587.x
  • Weselowski, B., Nathoo, N., Eastman, A.W., MacDonald, J., Yuan, Z.C., 2016. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. Microbiology, 16:24.
  • Wilson, M., Campbell, H. L., Ji, P., Jones, J. B., Cuppels, D. A. 2002. Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology, 92:1284-1292
  • Xie, J., Shi, H., Du, Z., Wang, T., Liu, X., Chen, S. 2016. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci. Rep., 6:21329.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gül İmriz

Publication Date January 25, 2020
Submission Date December 18, 2019
Published in Issue Year 2020

Cite

APA İmriz, G. (2020). In vitro Suppression Effects of Rhizobacteria against Pseudomonas syringae pv. tomato the Agent of Bacterial Speck Disease of Tomato. Turkish Journal of Agricultural and Natural Sciences, 7(1), 283-289. https://doi.org/10.30910/turkjans.680101