Research Article
BibTex RIS Cite

Yapay Sulak Alanlarda Dolgu Malzemesi Seçimine Yönelik Kolon Test Çalışması

Year 2020, , 402 - 410, 24.04.2020
https://doi.org/10.30910/turkjans.725811

Abstract

Yapay sulak alan teknolojisi özellikle düşük arazi maliyeti ve sınırlı işgücüne sahip bölgeler için dünyanın birçok yerinde konvansiyonel arıtma yöntemlerine alternatif olarak geliştirilen arıtma teknolojileri arasında yer almaktadır. Ülkemiz koşulları dikkate alındığında özellikle kırsal bölgelerde bu sistemler, atık su sorunlarının ekonomik ve sürdürülebilir çözümü için büyük önem arz etmektedir. Evsel nitelikli atık suların sulak alan ortamında oluşturduğu temel kirlilik besin elementleri (azot ve fosfor) yoluyla olmaktadır. Yapay sulak alan sistemlerinde temel fosfor giderim mekanizması ise ortam malzemesi tarafından adsorpsiyon yoluyla gerçekleşmektedir. Bu çalışmada Türkiye genelinde uygun bir fiyata doğal ve endüstriyel olarak üretimi yapılan zeolit ve pumis minerallerinin yapay sulak alanlarda ortam malzemesi olarak kullanılma olanakları laboratuvar koşullarında kolon denemeleri ile belirlenmiştir. Araştırmada iki malzemenin zeolit (Z) - pumis (P) ve bunların üç farklı karışım konusunun (%(v/v) 75, 50 ve 25 ), üç dozda fosfor giriş konsantrasyonu (10, 20 ve 40 mg-l) ve dört farklı hidrolik alıkonma süreleri (1, 2, 3 ve 4 gün) sonunda elektriksel iletkenlik ve pH değişimleri ile toplam fosfor (TP) tutulma verimleri belirlenmiştir. Çalışma sonucunda pumis malzeme, diğer karışım konularına kıyasla oldukça düşük iletkenlik değişimi göstermiştir. Tüm ortamlarda pH değişimi ise giriş konsantrasyon değerlerine bağlı olarak artış göstermiştir. Toplam fosfor verimleri bakımından karışımda pumis malzeme oranı arttıkça fosfor giderim verimi artarken zeolit malzemenin fosfor giderim etkinliği daha düşük bulunmuştur.

Thanks

¥: Bu çalışma Erciyes Üniversitesi Fen Bilimleri Enstitüsü Biyosistem Mühendisliği Anabilim Dalı öğrencisi Fatma AKÇAKOCA’nın Yüksek Lisans Tez’inden hazırlanmıştır.

References

  • Anonim, 1995. Standard methods for the exemination of water and wastewater, American Water Works Association/American Public Works Association/Water Environment Federation, 19th Edition, USA.
  • Anonim 2006. Ulusal Kalkınma Stratejisi, Devlet Planlama Teşkilatı, (sgb.tarim.gov.tr).
  • Catalfamo, P., Arrigo, I., Primerano, P., ve Corigliano, F., 2006. Efficiency of a zeolitized pumice waste as a low-cost heavymetals adsorbent. Journal of hazardous materials, 134(1-3), 140-143.
  • Cui, L., Zhu, X., Ma, M., Ouyang, Y., Dong, Mei, Zhu, W., Luo, S., 2008. Phosphorus Sorption Capacities and Physicochemical Properties of Nine Substrate Materials for Constructed Wetland. Archives of Environmental Contamination and Toxicology, 55: 210-217.
  • Çiftçi, H., Kaplan, Ş.Ş., Köseoğlu, H., Karakaya, E., Kitiş, M., 2007. Yapay sulakalanlarda atıksu arıtımı ve ekolojik yaşam, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1-2): 149-160.
  • Eckenfelder, W.W., 1968. Manual of Treatment Processes: Principles and applications of adsorption. Water Resource Management Series, No: 1, s. 1-19. Environmental Science Services Corporation, Newyork.
  • EPA, 1993. Constructed wetlands for wastewater treatment and wild life habitat: 17 Case Studies. United States Environmental Protection Agency, EPA832-R-93- 005.
  • EPA, 1999. Manual, Constructed Wetlands Treatment of Municipal Wasterwaters, EPA/625/R-99/010, U.S. Environmental Protection Acency, Cincinnati, Ohio, USA.
  • Garcia, J., Aguirre, P., Mujeriego, R., Huang, Y., Ortiz, L., Bayona, J.M., 2004. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater, Water Research, 38: 1669-1678.
  • Kadlec, H.R., and Knight, R.L., 1996. Treatment Wetlands. Lewis Publisher. FL. USA. Mann, R.A., 1994. Phosphorus Removal in Constructed Wetlands: Substratum adsorption, Pergamon Press, Oxford, s. 97-105.
  • Maden Tetkik ve Araştırma Genel Müdürlüğü. MTA. (http://www.mta.gov.tr), (Erişim Tarihi: Nisan 2018)
  • Masscheleyn, P. H., J. H. Pardue, R. D. DeLaune, and W. H. Patrick, Jr., 1992. Phosphorus release and assimilatory capacity of two lower Mississippi Valley freshwater wetland soils, Wat. Res. Bul., 28: 763-773.
  • Njau, K.N., Minja, R.J., Katima, J.H., 2003. Pumice Soil: A Potential Wetland Substrate for Treatment of Domestic Wastewater, Water Science and Technology, 48 (5):85/92.
  • Onar, A. N., Öztürk, B., 1993. Adsorption of Phosphate onto Pumice Powder, Environmental Technology, 14 (11): 1081-1087.
  • Reedy, K.R., D’Angelo E.M., 1994. Constructed wetland specifications for pollutant removal, Wat.Sci and Tech., 35 (5): 1-10.
  • Sakadevan, K., H. J. Bavor., 1998. Nutrient removal mechanisms in Constructed Wetlands, Water Resarch, 32 (2): 393-399.
  • Vymazal, J., Brix, H., Cooper, P.F., Haberl, R., Perfler, R., Laber, J., 1998. Removal mechanisms and types of constructed wetlands. Constructed wetlands for wastewater treatment in Europe, s. 17-66.

A Column Test Study for Selection of Filling Material in Constructed Wetlands

Year 2020, , 402 - 410, 24.04.2020
https://doi.org/10.30910/turkjans.725811

Abstract

Constructed wetland technology is used as an alternative of conventional wastewater treatment systems in various parts of the world with low land costs and limited labor supply. In Turkey, constructed wetlands play a key role in economic and sustainable solution of wastewater problems especially of rural sections of the country. Domestic wastewater generally generate pollution through basic plant nutrients (nitrogen and phosphorus). Substrate adsorption is the principle phosphorus removal mechanism in constructed wetland systems. This study was conducted to investigate the phosphorus removal performance of zeolite and pumice minerals from domestic wastewaters. Filter column tests were conducted under laboratory conditions to assess the phosphorus removal performance of substrate materials. Zeolite and pumice materials were used alone and in mixtures (%(v/v) 75, 50 and 25) and filter columns were subjected to three different phosphorus concentrations (10, 20 and 40 mg-l) and four different hydraulic retention times (1, 2, 3 and 4 days). At the end of hydraulic retention times, effluent samples were taken, and EC, pH and TP tests were conducted on samples. The lowest variations in EC values were seen in pumice material. Increasing pH values were observed with increasing influent concentrations in all materials. Pumice exhibited greater phosphorus adsorption performance than zeolite and increasing phosphorus adsorption was observed with increasing pumice ratio in mixtures.

References

  • Anonim, 1995. Standard methods for the exemination of water and wastewater, American Water Works Association/American Public Works Association/Water Environment Federation, 19th Edition, USA.
  • Anonim 2006. Ulusal Kalkınma Stratejisi, Devlet Planlama Teşkilatı, (sgb.tarim.gov.tr).
  • Catalfamo, P., Arrigo, I., Primerano, P., ve Corigliano, F., 2006. Efficiency of a zeolitized pumice waste as a low-cost heavymetals adsorbent. Journal of hazardous materials, 134(1-3), 140-143.
  • Cui, L., Zhu, X., Ma, M., Ouyang, Y., Dong, Mei, Zhu, W., Luo, S., 2008. Phosphorus Sorption Capacities and Physicochemical Properties of Nine Substrate Materials for Constructed Wetland. Archives of Environmental Contamination and Toxicology, 55: 210-217.
  • Çiftçi, H., Kaplan, Ş.Ş., Köseoğlu, H., Karakaya, E., Kitiş, M., 2007. Yapay sulakalanlarda atıksu arıtımı ve ekolojik yaşam, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1-2): 149-160.
  • Eckenfelder, W.W., 1968. Manual of Treatment Processes: Principles and applications of adsorption. Water Resource Management Series, No: 1, s. 1-19. Environmental Science Services Corporation, Newyork.
  • EPA, 1993. Constructed wetlands for wastewater treatment and wild life habitat: 17 Case Studies. United States Environmental Protection Agency, EPA832-R-93- 005.
  • EPA, 1999. Manual, Constructed Wetlands Treatment of Municipal Wasterwaters, EPA/625/R-99/010, U.S. Environmental Protection Acency, Cincinnati, Ohio, USA.
  • Garcia, J., Aguirre, P., Mujeriego, R., Huang, Y., Ortiz, L., Bayona, J.M., 2004. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater, Water Research, 38: 1669-1678.
  • Kadlec, H.R., and Knight, R.L., 1996. Treatment Wetlands. Lewis Publisher. FL. USA. Mann, R.A., 1994. Phosphorus Removal in Constructed Wetlands: Substratum adsorption, Pergamon Press, Oxford, s. 97-105.
  • Maden Tetkik ve Araştırma Genel Müdürlüğü. MTA. (http://www.mta.gov.tr), (Erişim Tarihi: Nisan 2018)
  • Masscheleyn, P. H., J. H. Pardue, R. D. DeLaune, and W. H. Patrick, Jr., 1992. Phosphorus release and assimilatory capacity of two lower Mississippi Valley freshwater wetland soils, Wat. Res. Bul., 28: 763-773.
  • Njau, K.N., Minja, R.J., Katima, J.H., 2003. Pumice Soil: A Potential Wetland Substrate for Treatment of Domestic Wastewater, Water Science and Technology, 48 (5):85/92.
  • Onar, A. N., Öztürk, B., 1993. Adsorption of Phosphate onto Pumice Powder, Environmental Technology, 14 (11): 1081-1087.
  • Reedy, K.R., D’Angelo E.M., 1994. Constructed wetland specifications for pollutant removal, Wat.Sci and Tech., 35 (5): 1-10.
  • Sakadevan, K., H. J. Bavor., 1998. Nutrient removal mechanisms in Constructed Wetlands, Water Resarch, 32 (2): 393-399.
  • Vymazal, J., Brix, H., Cooper, P.F., Haberl, R., Perfler, R., Laber, J., 1998. Removal mechanisms and types of constructed wetlands. Constructed wetlands for wastewater treatment in Europe, s. 17-66.
There are 17 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Fatma Akçakoca This is me

Zeki Gökalp

Publication Date April 24, 2020
Submission Date September 20, 2019
Published in Issue Year 2020

Cite

APA Akçakoca, F., & Gökalp, Z. (2020). Yapay Sulak Alanlarda Dolgu Malzemesi Seçimine Yönelik Kolon Test Çalışması. Türk Tarım Ve Doğa Bilimleri Dergisi, 7(2), 402-410. https://doi.org/10.30910/turkjans.725811