Research Article
BibTex RIS Cite

Yemeklik Sakız Fasulyesinde Bitki Tane Verimi Yönünden Genotip x Çevre İnteraksiyonunun Farklı Yöntemler ile İncelenmesi

Year 2020, , 798 - 805, 20.07.2020
https://doi.org/10.30910/turkjans.738579

Abstract

Bu araştırma altı farklı çevrede yetiştirilen sebze tipi sakız fasulyesi (Cyamopsis tetragonolaba) genotiplerinin bitki tane verimi yönünden stabilitelerini belirlemek amacıyla yürütülmüştür. Araştırmada 12 adet genotip kullanılmıştır. Denemeler tesadüf blokları deneme desenine göre üç tekerrürlü olarak kurulmuştur. Genotiplerin bitki tane verimi yönünden stabilitelerini belirlemek amacıyla S⁽¹⁾, S⁽²⁾, S⁽³⁾, S⁽⁶⁾, NP⁽¹⁾, NP⁽²⁾, NP⁽³⁾, NP⁽⁴⁾, Wᵢ², σ²ᵢ, s²dᵢ, bᵢ, CVi, θ₍ᵢ₎, θᵢ, 𝘒R parametreleri kullanılmıştır. Ayrıca, kullanılan yöntemler arasındaki ilişkileri görsel olarak değerlendirmek için heatmap ve biplot oluşturulmuştur. Sonuç olarak Samen çeşidi ile SF10 ve SF2 genotiplerinin kullanıan yöntemlerinin çoğunluğuna göre en stabil olduğu, yöntemlerin aralarındaki ilişkiye göre dört grup oluşturduğu tespit edilmiştir. Birinci grubu bitki tane verimi ile bᵢ ve CVi oluşturmuştur. Bu grup ile olumlu ve önemli ilişkiye sahip olan ikinci grupta ise s²dᵢ, σ²ᵢ, θᵢ, ve Wᵢ² yöntemleri yer almıştır. Tane verimi ile olumsuz ve önemli ilişkiye sahip olan ve tamamı parametrik olmayan yöntemlerden oluşan dördüncü grubu ise S⁽⁶⁾, NP⁽²⁾, NP⁽³⁾, NP⁽⁴⁾ ve 𝘒R yöntemleri oluşturmuştur. Sebze tipi sakız fasulyesinde bitki tane verimi yönünden stabil genotipleri belirlemek için çok sayıda yöntem kullanmak yerine her yöntem grubundan bir adet paremetrenin kullanılması yeterli olacaktır.

References

  • Akcura, M., Kaya, Y. 2008. Non-parametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.). Genetics and Molecular Biology, 31(4), 906-913.
  • Akcura, M., Kaya, Y., Taner, S., Ayranci, R. 2006. Parametric stability analyses for grain yield of durum wheat. Plant Soil and Environment, 52(6), 254. Becker, H. C., Leon, J. 1988. Stability analysis in plant breeding. Plant Breeding 101: 1–23.
  • Eberhart, S.A.T., Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science 6:36–40.
  • Finlay, K.W., Wilkinson, G.N. 1963. Adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14:742–754.
  • Fox, P., Skovmand, B., Thompson, B., Braun, H. I., Cormier, R. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57– 64.
  • Francis, T.R., Kannenberg, L.W. 1978. Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science 58:1029–1034.
  • Girish, M.H., Gasti, V.D., Mastiholi, A.B., Thammaiah, N., Shantappa, T., Mulge, R., Kerutagi, M.G. 2012. Correlation and path analysis for growth, pod yield, seed yield and quality characters in cluster bean (Cyamopsis tetragonoloba (L.) Taub.). Karnataka Journal of Agricultural Sciences, 25(4), 498-502.
  • Hocaoğlu, O., Akan, K., Akçura, M. 2020. Evaluating leaf rust reactions of pure bread wheat landrace lines using non-parametric statistics. Phytoparasitica, 48:261-271.
  • Huhn, M. 1990. Non-parametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47:189–1990.
  • Kang, M.S. 1988. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communication, 16:113–115.
  • Nassar, R., Huhn, M. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43:45–53.
  • Plaisted, RI., Peterson, L.C. 1959. A technique for evaluating the ability of selection to yield consistently in different locations or seasons. American Potato Journal, 36:381–385.
  • Plaisted, R.L. 1960. A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal 37:166–172.
  • Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., and Siddique K.H.M., 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences 7(1): e1211. doi:10.1002/aps3.1211
  • Shukla, G.K., 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29:237–245.
  • Sozen, O., Karadavut, U., Akcura, M. 2017. Determination of the some yield componenets of dry bean (Pahseolus vulgaris L.) genotypes in different environments. International Journal of Agriculture and Environmental Research, 3 (5): 3755-3769.
  • Sozen, O., Karadavut, U., Ozcelik, H., Bozoglu, H., Akcura, M. 2018. Genotype x Environment interaction of some dry bean (Phaseolus vulgaris L.) genotypes. Legume Research, (41) 2: 189-195.
  • Sozen, O., Karadavut, U. 2018. Determination of Genotype x Environment Interactions of Some Chickpea (Cicer arietinum L.) Genotypes by Using Diferent Stability Methods. Tarım Bilimleri Dergisi, 24: 431-438.
  • Sozen, O., Karadavut, U. 2019. Statistical Analysis Of Some Characters Affecting Yield In Chickpea Varieties Which Can Be Breeded In Arid Climate Conditions. The Journal of Global Innovations in Agricultural and Social Sciences, 7 (4): 145-149.
  • Thennarasu, K., 1995. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. PhD thesis, PJ School, IARI, New Delhi, India.
  • Vir, O., Singh, A.K., 2015. Variability and correlation analysis in the germplasm of cluster bean [Cyamopsis tetragonoloba (L.) Taub.] in hyper hot arid climate of Western India. Legume Research-An International Journal, 38(1), 37-42.
  • Wricke, G., 1962. Übereine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung 47:92–96.
  • Yan, W., 2014. Crop Variety Trials: Data Management and Analysis John Wiley and Sons (2014), p. 349.
  • Załuski, D., Tworkowski, J., Krzyżaniak, M., Stolarski, M. J., Kwiatkowski, J. 2020. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy, 10(1), 64, 1-13.

Investigation of Genotype x Environment Interaction with Different Methods in Grain Yield of Edible Cluster Bean

Year 2020, , 798 - 805, 20.07.2020
https://doi.org/10.30910/turkjans.738579

Abstract

This research was carried out to determine the stability of vegetable type cluster bean (Cyamopsis tetragonolaba) genotypes grown in different six environments in terms of plant grain yield. 12 genotypes were used in the study. Experiments were conducted randomized completed blocks design with replications. Among stability parameters such as S⁽¹⁾, S⁽²⁾, S⁽³⁾, S⁽⁶⁾, NP⁽¹⁾, NP⁽²⁾, NP⁽³⁾, NP⁽⁴⁾, Wᵢ², σ²ᵢ, s²dᵢ, bᵢ, CVi, θ₍ᵢ₎, θᵢ and 𝘒R were used to determine the stability of genotypes in terms of plant seed yield. Besides, heatmap and biplots were created to evaluate the relationships between the methods used visually. As a result, it was determined that Samen variety and SF10 and SF2 genotypes were the most stable according to the majority of the methods used, and the methods formed four groups according to the relationship between them. The first group formed bᵢ, CVi, and plant seed yield. The second group, which has a positive and important relationship with the first group, includes the s²dᵢ, σ²ᵢ, θᵢ, and Wᵢ² parameters. Five non-parametric (S⁽⁶⁾, NP⁽²⁾, NP⁽³⁾, NP⁽⁴⁾, and 𝘒R) methods consisted of the fourth group, which has a negative and important relationship with grain yield. . Instead of using a large number of methods to determine stable genotypes in terms of plant grain yield in vegetable type cluster bean, it will be sufficient to use one parameter from each method group.

References

  • Akcura, M., Kaya, Y. 2008. Non-parametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.). Genetics and Molecular Biology, 31(4), 906-913.
  • Akcura, M., Kaya, Y., Taner, S., Ayranci, R. 2006. Parametric stability analyses for grain yield of durum wheat. Plant Soil and Environment, 52(6), 254. Becker, H. C., Leon, J. 1988. Stability analysis in plant breeding. Plant Breeding 101: 1–23.
  • Eberhart, S.A.T., Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science 6:36–40.
  • Finlay, K.W., Wilkinson, G.N. 1963. Adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14:742–754.
  • Fox, P., Skovmand, B., Thompson, B., Braun, H. I., Cormier, R. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57– 64.
  • Francis, T.R., Kannenberg, L.W. 1978. Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science 58:1029–1034.
  • Girish, M.H., Gasti, V.D., Mastiholi, A.B., Thammaiah, N., Shantappa, T., Mulge, R., Kerutagi, M.G. 2012. Correlation and path analysis for growth, pod yield, seed yield and quality characters in cluster bean (Cyamopsis tetragonoloba (L.) Taub.). Karnataka Journal of Agricultural Sciences, 25(4), 498-502.
  • Hocaoğlu, O., Akan, K., Akçura, M. 2020. Evaluating leaf rust reactions of pure bread wheat landrace lines using non-parametric statistics. Phytoparasitica, 48:261-271.
  • Huhn, M. 1990. Non-parametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47:189–1990.
  • Kang, M.S. 1988. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communication, 16:113–115.
  • Nassar, R., Huhn, M. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43:45–53.
  • Plaisted, RI., Peterson, L.C. 1959. A technique for evaluating the ability of selection to yield consistently in different locations or seasons. American Potato Journal, 36:381–385.
  • Plaisted, R.L. 1960. A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal 37:166–172.
  • Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., and Siddique K.H.M., 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences 7(1): e1211. doi:10.1002/aps3.1211
  • Shukla, G.K., 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29:237–245.
  • Sozen, O., Karadavut, U., Akcura, M. 2017. Determination of the some yield componenets of dry bean (Pahseolus vulgaris L.) genotypes in different environments. International Journal of Agriculture and Environmental Research, 3 (5): 3755-3769.
  • Sozen, O., Karadavut, U., Ozcelik, H., Bozoglu, H., Akcura, M. 2018. Genotype x Environment interaction of some dry bean (Phaseolus vulgaris L.) genotypes. Legume Research, (41) 2: 189-195.
  • Sozen, O., Karadavut, U. 2018. Determination of Genotype x Environment Interactions of Some Chickpea (Cicer arietinum L.) Genotypes by Using Diferent Stability Methods. Tarım Bilimleri Dergisi, 24: 431-438.
  • Sozen, O., Karadavut, U. 2019. Statistical Analysis Of Some Characters Affecting Yield In Chickpea Varieties Which Can Be Breeded In Arid Climate Conditions. The Journal of Global Innovations in Agricultural and Social Sciences, 7 (4): 145-149.
  • Thennarasu, K., 1995. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. PhD thesis, PJ School, IARI, New Delhi, India.
  • Vir, O., Singh, A.K., 2015. Variability and correlation analysis in the germplasm of cluster bean [Cyamopsis tetragonoloba (L.) Taub.] in hyper hot arid climate of Western India. Legume Research-An International Journal, 38(1), 37-42.
  • Wricke, G., 1962. Übereine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung 47:92–96.
  • Yan, W., 2014. Crop Variety Trials: Data Management and Analysis John Wiley and Sons (2014), p. 349.
  • Załuski, D., Tworkowski, J., Krzyżaniak, M., Stolarski, M. J., Kwiatkowski, J. 2020. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy, 10(1), 64, 1-13.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Mevlüt Akçura 0000-0001-7828-5163

Ahmet Turan This is me

Publication Date July 20, 2020
Submission Date May 17, 2020
Published in Issue Year 2020

Cite

APA Akçura, M., & Turan, A. (2020). Yemeklik Sakız Fasulyesinde Bitki Tane Verimi Yönünden Genotip x Çevre İnteraksiyonunun Farklı Yöntemler ile İncelenmesi. Turkish Journal of Agricultural and Natural Sciences, 7(3), 798-805. https://doi.org/10.30910/turkjans.738579