Acinetobacter sp. BAN1 ve Acetobacter pasteurianus PW1’in Bakteriyel Selüloz Üretimine Tarımsal Artıkların Karşılaştırmalı Etkisi
Year 2017,
Volume: 4 Issue: 2, 145 - 154, 21.04.2017
B.c. Adebayo Tayo
M.o. Akıntunde
S.o. Alao
Abstract
Comparative effect of Pineapple waste medium (PIWAM) and Pawpaw waste medium (PAWAM) on the production of biocellulose (BC) by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1 was investigated. The dry weight of the BC produced by Acinetobacter sp. BAN1 ranged from 0.4 – 0.6 g l-1 and 0.2 – 1.1 g l-1 in PIWAM and PAWAM. The dry weight of the BC produced by Acetobacter pasteurianus PW1 ranged from 0.1 – 3.9 g l-1 and 0.2 – 1.0 g l-1 in PIWAM and PAWAM. PIWAM supported the highest BC production by the two strains. 37°C, 35°C and 28°C supported the highest BC production in PIWAM and PAWAM by the isolates. pH 8, pH 3 and pH 7 was the best for BC by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1 in PIWAM and PAWAM. FTIR spectrometry analysis of the BC showed the presence of - glycosidic bonds connecting the carbohydrate monomers, hydroxyl groups, carbonyl groups and vibrating sugar rings. In conclusion, the study has demonstrated the ability of utilizing low cost agro wastes as substrates for bacterial cellulose production.
References
- Aydin, Y.A., Aksoy, N.D. 2009. Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the world congress on Engineering and computer science, Vol I, Oct 20-22, San Francisco, USA.
Bae, S., Shoda, M. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium, Biotechnology Progress, 20: 1366-1371.
- Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska H. 2005. Bacterial Cellulose. In: Polysaccharides and Polyamides in the Food Industry, Steinbüchel, A., Rhee, S.K. (Eds.), Wiley- VCH Verlag, Weinheim, Germany pp. 31-85.
- Brown, Jr. R.M. 2004. Cellulose Structure and Biosynthesis: What is in store for the 21st Century? Journal of Polymer Science: Part A: Polymer Chemistry, 42(3): 487-495.
- Ҫakar, F., Özer, I., Aytekin, A.Ö., Şahin, F. 2014. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106:7–13.
- Fontana, J.D., Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., Souza, S.J., Narcisco, G.P., Bichara, J.A., Farah, L.F.X. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24-25: 253-264.
- Gayathry, G., Gopalaswamy, G. 2014. Production and characterization of microbial cellulosic fible from Acetobacter xylinum. Indian Journal of Fibre Textile Research, 39: 93-96.
- George, J., Ramana, K.V., Sabapathy, S.N., Bawa, A.S. 2005. Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane, World Journal of Microbiology and Biotechnology, 21: 1323-1327.
- Gomes, F.P., Silva, H.C.S.N., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Pascoal Neto, C., Freire, C.S.R. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy, 55:205-211.
- Gunzley, H., Gremlich, H.V. 2002. IR spectroscopy, an introduction, wiley VCH, Germany, p.p. 361.
Guo, Y., Wu, P. 2008. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydrate Polymers, 74: 509-513.
- Hestrin, S., Schramm, M. 1954. Synthesis of Cellulose by Acetobacter xylinum: Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to cellulose. Biochemical Journal, 58: 345-352.
- Jonas, R., Farah, L. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability, 59: 101-106.
- Jung, J.Y., Park, J.K., Chang, H.N. 2005. Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microbial Technology, 37: 347-354.
- Kamarudin, S., Sahaid, K., Sobri, M., Mohtar, W., Radiah, D., Norhasliza, H. 2013. Different media formulation on biocellulose production by Acetobacter xylinum (0416). Journal of Science and Technology, 21(1): 29-36.
- Keshk, S.M.A.S. 2014. Bacterial Cellulose Production and its Industrial Applications. Journal of Bioprocessing and Biotechniques, 4(2): 1-10.
- Klemm, D., Schumann, D., Udhardt, U., Marsch, S. 2001. Bacterial synthesized cellulose: Artificial blood vessels for microsurgery. Progress in Polymer Science, 26: 1561-1603.
- Kurosumi, A., Sasaki, C., Yamashita, Y., Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76: 333-335.
- Lestari, P., Elfrida, N., Suryani, A., Suryadi, Y. 2014. Study on the production of bacterial cellulose from Acetobacter xylinum, using agrowastes. Jordan Journal of Biological Science, 7(1): 75-80.
- Marchessault, R.H., Sundararajan, P.R. 1983. Cellulose. In: Aspinall GO (Ed.). The polysaccharides. New York: Academic Press, Inc. 2: 12-95.
- Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3): 426-428.
- Oh, S.Y., Yoo, D.I., Shin, Y., Seo, G. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3): 417-428.
- Pae, N., Zahan, K.A., Muhamad, I.I. 2011. Production of biopolymer from Acetobacter xylinum using different fermentation methods. International Journal of Engineering Technology, 11: 90-98.
- Pourramezan, G.Z., Roayaei, A.M., Qezelbash, Q.R. 2009. Optimization of Culture Conditions for Bacterial Cellulose Production by Acetobacter sp. 4B-2. Biotechnology, 8: 150-154.
- Rosales, E., Couto, S.R., Sanromán, M.A. 2005. Reutilization of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsute. Journal of Food Engineering, 66: 419-423.
- Ruka, D.R., Simon, G.P., Dean, K.M. 2012. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89: 613-622.
- Sun, Y., Lin, L., Deng, H., Li, J., He, B., Sun, R., Ouyang, P. 2008. Structure bamboo in formic acid. BioResources, 3(2): 297-315.
- Yoshikawa, H., Myoui, A. 2005. Bone tissue engineering with porous hydroxyapatite ceramics. Journal of Artificial Organs, 8: 131-136.
Comparative Effect of Agrowastes on Bacterial Cellulose Production by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1
Year 2017,
Volume: 4 Issue: 2, 145 - 154, 21.04.2017
B.c. Adebayo Tayo
M.o. Akıntunde
S.o. Alao
Abstract
Comparative effect of Pineapple
waste medium (PIWAM) and Pawpaw waste medium (PAWAM) on the production of
biocellulose (BC) by Acinetobacter sp.
BAN1 and Acetobacter pasteurianus PW1
was investigated. The dry weight of the BC produced by
Acinetobacter sp. BAN1 ranged
from 0.4 – 0.6 g l-1 and 0.2 –
1.1 g
l-1 in PIWAM and PAWAM. The dry weight
of the BC produced by Acetobacter
pasteurianus PW1 ranged from 0.1 – 3.9 g l-1 and 0.2 – 1.0 g l-1 in PIWAM and PAWAM. PIWAM supported the highest BC
production by the two strains. 37°C, 35°C and 28°C supported the highest BC
production in PIWAM and PAWAM by the isolates. pH 8, pH 3 and pH 7 was the best
for BC by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1 in PIWAM
and PAWAM. FTIR spectrometry analysis of the BC showed the presence of
- glycosidic bonds connecting the
carbohydrate monomers, hydroxyl groups, carbonyl groups and vibrating sugar
rings. In conclusion, the study has demonstrated the ability of utilizing low
cost agro wastes as substrates for bacterial cellulose production.
References
- Aydin, Y.A., Aksoy, N.D. 2009. Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the world congress on Engineering and computer science, Vol I, Oct 20-22, San Francisco, USA.
Bae, S., Shoda, M. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium, Biotechnology Progress, 20: 1366-1371.
- Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska H. 2005. Bacterial Cellulose. In: Polysaccharides and Polyamides in the Food Industry, Steinbüchel, A., Rhee, S.K. (Eds.), Wiley- VCH Verlag, Weinheim, Germany pp. 31-85.
- Brown, Jr. R.M. 2004. Cellulose Structure and Biosynthesis: What is in store for the 21st Century? Journal of Polymer Science: Part A: Polymer Chemistry, 42(3): 487-495.
- Ҫakar, F., Özer, I., Aytekin, A.Ö., Şahin, F. 2014. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106:7–13.
- Fontana, J.D., Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., Souza, S.J., Narcisco, G.P., Bichara, J.A., Farah, L.F.X. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24-25: 253-264.
- Gayathry, G., Gopalaswamy, G. 2014. Production and characterization of microbial cellulosic fible from Acetobacter xylinum. Indian Journal of Fibre Textile Research, 39: 93-96.
- George, J., Ramana, K.V., Sabapathy, S.N., Bawa, A.S. 2005. Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane, World Journal of Microbiology and Biotechnology, 21: 1323-1327.
- Gomes, F.P., Silva, H.C.S.N., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Pascoal Neto, C., Freire, C.S.R. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy, 55:205-211.
- Gunzley, H., Gremlich, H.V. 2002. IR spectroscopy, an introduction, wiley VCH, Germany, p.p. 361.
Guo, Y., Wu, P. 2008. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydrate Polymers, 74: 509-513.
- Hestrin, S., Schramm, M. 1954. Synthesis of Cellulose by Acetobacter xylinum: Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to cellulose. Biochemical Journal, 58: 345-352.
- Jonas, R., Farah, L. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability, 59: 101-106.
- Jung, J.Y., Park, J.K., Chang, H.N. 2005. Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microbial Technology, 37: 347-354.
- Kamarudin, S., Sahaid, K., Sobri, M., Mohtar, W., Radiah, D., Norhasliza, H. 2013. Different media formulation on biocellulose production by Acetobacter xylinum (0416). Journal of Science and Technology, 21(1): 29-36.
- Keshk, S.M.A.S. 2014. Bacterial Cellulose Production and its Industrial Applications. Journal of Bioprocessing and Biotechniques, 4(2): 1-10.
- Klemm, D., Schumann, D., Udhardt, U., Marsch, S. 2001. Bacterial synthesized cellulose: Artificial blood vessels for microsurgery. Progress in Polymer Science, 26: 1561-1603.
- Kurosumi, A., Sasaki, C., Yamashita, Y., Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76: 333-335.
- Lestari, P., Elfrida, N., Suryani, A., Suryadi, Y. 2014. Study on the production of bacterial cellulose from Acetobacter xylinum, using agrowastes. Jordan Journal of Biological Science, 7(1): 75-80.
- Marchessault, R.H., Sundararajan, P.R. 1983. Cellulose. In: Aspinall GO (Ed.). The polysaccharides. New York: Academic Press, Inc. 2: 12-95.
- Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3): 426-428.
- Oh, S.Y., Yoo, D.I., Shin, Y., Seo, G. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3): 417-428.
- Pae, N., Zahan, K.A., Muhamad, I.I. 2011. Production of biopolymer from Acetobacter xylinum using different fermentation methods. International Journal of Engineering Technology, 11: 90-98.
- Pourramezan, G.Z., Roayaei, A.M., Qezelbash, Q.R. 2009. Optimization of Culture Conditions for Bacterial Cellulose Production by Acetobacter sp. 4B-2. Biotechnology, 8: 150-154.
- Rosales, E., Couto, S.R., Sanromán, M.A. 2005. Reutilization of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsute. Journal of Food Engineering, 66: 419-423.
- Ruka, D.R., Simon, G.P., Dean, K.M. 2012. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89: 613-622.
- Sun, Y., Lin, L., Deng, H., Li, J., He, B., Sun, R., Ouyang, P. 2008. Structure bamboo in formic acid. BioResources, 3(2): 297-315.
- Yoshikawa, H., Myoui, A. 2005. Bone tissue engineering with porous hydroxyapatite ceramics. Journal of Artificial Organs, 8: 131-136.