Research Article
BibTex RIS Cite

Thiacloprid’in, Anadolu Bal Arısı (Apis mellifera anatoliaca) ve Kafkas Bal Arısı (Apis mellifera causica)’nın Yaşam Sürelerine Etkileri

Year 2018, Volume: 5 Issue: 3, 245 - 252, 26.07.2018
https://doi.org/10.30910/turkjans.448343

Abstract

Son yıllarda tarımsal alanlarda, orman ve bahçelerde
hastalık ve zararlılara karşı kullanılan pestisitlerin arılara verdiği zararlar
gündeme geldikçe üreticiler ilaç tercihlerini arılara zarar vermeyen ilaçlar
yönünde kullanmaya başlamışlardır. Thiacloprid, neonikotinoid bileşenler
sınıfına ait
dünya
çapında yaygın olarak kullanılan
bir pestisittir. Bu amaçla çalışmamızda thiacloprid
etken maddeli insektisitin ülkemizde yaygın olarak bulunan Anadolu bal arısı (Apis
mellifera anatoliaca
) ve Kafkas arısının (Apis mellifera causica)
yaşam süreleri üzerine etkileri araştırılmıştır. Çalışmada ele alınan
insektisitin etiket dozu (40 ml/100 L su) ve bu dozdan %50 oranında
seyreltilerek hazırlanan altı ayrı dozu ve kontrol grubu için su arılara
püskürtülerek etkileri belirlenmiştir. Uygulama yapıldıktan sonra 12 saat
aralıklarla denemeler kontrol edilmiş ve thiacloprid uygulanan arıların kontrol
grubuna göre yaşam sürelerinde meydana gelen değişiklikler belirlenmiştir. En
yüksek dozda insektisit uygulanan arıların tamamı 12 saat içinde ölürken
kontrol grubu Anadolu arıları ortalama 16 gün, Kafkas arıları ortalama 15 gün
yaşamıştır. Pestisit uygulanan arıların ortalama yaşam süresi Anadolu ve Kafkas
bal arısında sırası ile 6 ve 5 gündür. Doz yaşam süresi arasındaki ilişki
(Anadolu Arısında R² = 0.9745, Kafkas arısında R² = 0,9439) oldukça yüksek
bulunmuştur. Kontrol grubu arılar pestisit püskürtülen arılara göre daha fazla
yaşamışlardır. Kontrol grubuna göre ise pestisit uygulanan arıların yaşam
sürelerindeki düşme oranı Anadolu arısında %62.70 Kafkas arısında %64.10 olarak
belirlenmiştir.

References

  • Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Settele, J. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785): 351-354.
  • Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., Potts, S.G. 2010. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11: 106-115.
  • Chauzat, M.P., Jacques, A., Laurent, M., Bougeard, S., Hendrikx, P., Ribière-Chabert, M. 2016. Risk indicators affecting honey bee colony survival in Europe: One year of surveillance. Apidologie, 47: 348-378.
  • Cornman, R.S., Tarpy, D.R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J.S., Evans, J.D. 2012. Pathogen webs in collapsing honey bee colonies. PLoS one, 7(8): e43562.
  • Cressey, D. 2013. Europe Debates Risk to Bees. Nature 496: 408.
  • Cresswell, J.E., Page, C.J., Uygun, M.B., Holmbergh, M., Li, Y., Wheeler, J.G., Laycock, I., Pook, C.J., De Ibarra, N.H., Smirnoff, N., Tyler, C.R. 2012. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115: 365-371. Dag, A. 2009. Interaction between pollinators and crop plants: the Israeli experience. Isr. J. Plant Sci. 57: 231-242.
  • Decourtye, A., Lacassie, E., Pham-Delègue, M.H. 2003. Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manage. Sci. 59: 269-278.
  • Dickel, F., Münch, D., Amdam, G.V., Mappes, J., Freitak, D. 2018. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One, 13(1): e0191256.
  • Dively, G.P., Embrey, M.S., Kamel, A., Hawthorne, D.J., Pettis, J.S. 2015. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10: e0118748.
  • Godfray, H.C.J., Blacquiere, T., Field, L.M., Hails, R.S., Petrokofsky, G., Potts, S.G., McLean, A.R. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. In Proc. R. Soc. B (281(1786): 20140558). The Royal Society.
  • Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1255957.
  • Gray, A., Peterson, M. 2017. Investigating honey bee colony losses from surveys of beekeepers. In Royal Statistical Society Conference, 4-7 September 2017, Glasgow.
  • Győri, J., Farkas, A., Stolyar, O., Székács, A., Mörtl, M., Vehovszky, Á. 2017. Inhibitory effects of four neonicotinoid active ingredients on acetylcholine esterase activity. Acta Biologica Hungarica, 68(4): 345-357.
  • Henry, M., Cerrutti, N., Aupinel, P., Decourtye, A., Gayrard, M., Odoux, J.F., Bretagnolle, V. 2015. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. In Proc. R. Soc. B (282(1819): 20152110). The Royal Society.
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A. 2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food. Chem. 59: 2897-2908.
  • Karahan, A., Çakmak, I., Hranitz, J.M., Karaca, I., Wells, H. 2015. Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology, 24(9): 2017-2025.
  • Karahan, A., Karaca, İ. 2016. Adana ve Konya illerindeki arıcılık faaliyetleri ve koloni kayıpları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2).
  • Kavak, G. 2016. Son yıllarda görülen koloni kayıpları ve muhtemel sebepleri. Uludağ Arıcılık Dergisi, 15(1): 33-40. Long, E.Y., Krupke, C.H. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications 7, Article number: 11629 doi:10.1038/ncomms11629.
  • Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Sattelle, D.B. 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotechnol Biochem 69: 1442-1452.
  • Matsuda, K., Kanaoka, S., Akamatsu, M., Sattelle, D.B. 2009. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76: 1-10.
  • Mitchell, E.A.D., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., Aebil, A. 2017. A worldwide survey of neonicotinoids in honey. Science 358(6359): 109-111.
  • Mogren, C.L., Lundgren, G.J. 2016. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Scientific Reports 6, Article number: 29608(2016) doi:10.1038/srep29608.
  • Muz, D., Muz, M. 2017. Investigation of some pathogens "colony loss syndrome" resembled losses apiaries in Tekirdağ. Kocatepe Veteriner Dergisi 10(2017): 21-28.
  • Oliver, T.H., Isaac, N.J., August, T.A., Woodcock, B.A., Roy, D.B., Bullock, J.M. 2015. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 6: 10122.
  • Özbek, H. 2010. Arılar ve insektisitler. Uludağ Arıcılık Dergisi Kasım 2010 / Uludag Bee Journal, 10(3): 85-95.
  • Özdemir, N. 2017. Neonikotinoid pestisitler ve arı sağlığına etkileri. Uludağ Arıcılık Dergisi, 17(1): 44-48.
  • Peng, Y.C., Yang, E.C. 2016. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies. Scientific Reports 6, Article number: 19298.
  • Pettis, J.S., Van Engelsdorp, D., Johnson, J., Dively, G. 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. 99: 153-158.
  • Phelps, J.D., Strang, C.G., Gbylik-Sikorska, M., Sniegocki, T., Posyniak, A., Sherry, D.F. 2017. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 1-13.
  • Pilling, E., Campbell, P., Coulson, M., Ruddle, N., Tornier, I. 2013. A Four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS ONE 8(10): e77193. https://doi.org/10.1371/journal.pone.0077193.
  • Renaud, M., Akeju, T., Natal-da-Luz, T., Leston, S., Rosa, J., Ramos, F., Azevedo-Pereira, H.M. 2018. Effects of the neonicotinoids acetamiprid and thiacloprid in their commercial formulations on soil fauna. Chemosphere, 194: 85-93.
  • Sanchez-Bayo, F., Goka, K. 2014. Pesticide residues and bees–a risk assessment. Plos one, 9(4): e94482.
  • Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. 2016. Are bee diseases linked to pesticides? A brief review. Environment international, 89: 7-11.
  • Sarıtaş, E., Ay, R. 2016. Panonychus ulmi (Koch) ve Neoseiulus californicus (Mc Gregor)’un üreme gücü ve yaşam sürelerine bazı pestisitlerin etkisi: hormoligosis. Türkiye Entomoloji Dergisi, 40(1), 97-106.
  • Schmuck, R. 2001. Ecotoxicological profile of the insecticide thiacloprid. Pflschutz Nachr. Bayer Engl Edn 54: 161-184. Schuld, M., Schmuck, R. 2000. Ecotoxicology. Effects of thiacloprid, a new chloronicotinyl insecticide, on the egg parasitoid trichogramma cacaoeciae. 9: 197.
  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research. 2015(22): 5-34. pmid:25233913.
  • Stokstad, E. 2007. The case of the empty hives. Science 316: 970-972.
  • Tison, L., Holtz, S., Adeoye, A., Kalkan, Ö., Irmisch, N.S., Lehmann, N,. Menzel, R. 2017. Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees. Journal of Experimental Biology, 220(20): 3695-3705.
  • Ünal, H.H., Oruç, H.H., Sezgin, A., Kabil, E. 2010. Türkiye’de 2006-2010 yılları arasında, bal arılarında görülen ölümler sonrasında tespit edilen pestisitler. Uludağ Arıcılık Dergisi Kasım 2010 / Uludag Bee Journal, 10(4): 119-125.
  • Van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charrie`re, J.D., Chlebo, R., Wilkins, S. 2012. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. Journal of Apicultural Research, 51: 100-114.
  • Van der Zee, R., Brodschneider, R., Brusbardis, V., Charrie`re, J.D., Chlebo, R., Coffey, M.F., Gray, A. 2014. Results of international standardized beekeeper surveys of colony losses for winter 2012–2013: Analysis of winter loss rates and mixed effects modelling of risk factors for winter. Journal of Apicultural Research, 53: 19-34.
  • Van Engelsdorp, D., Meixner, M.D. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.
  • Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J.L., Belzunces, L.P. 2011. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS one, 6(6): e21550. Wu-Smart, J., Spivak, M. 2016. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports, 6: 32108.
  • Yıldırım, E. 2012. Tarımsal Zararlılarla Mücadele Yöntemleri ve İlaçlar. 3. Baskı. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 219, Ziraat Fakültesi Ofset Tesisi, Erzurum,

Effects of Thiacloprid on the Life Span of Anatolian Honeybee (Apis mellifera anatoliaaca) and Caucasian Honeybee (Apis mellifera causica)

Year 2018, Volume: 5 Issue: 3, 245 - 252, 26.07.2018
https://doi.org/10.30910/turkjans.448343

Abstract

As the harm
caused by pesticides in recent years has come up, conscious people prefer to
use medicines that do not harm the pest. Thiacloprid active agricultural
warfare agent from the Neonicotinoid group, which is one of the preferred
pesticides for this purpose and has an increasing market size, was examined in
this study, and its effect on the length of life of Anatolian honeybee (Apis
mellifera anatoliaca
) and Caucasian bee (Apis mellifera causica) was
examined. In the study, the label dose of the pesticide (40 ml/100-L-water) and
6 separate dose prepared by diluting 50 % of the label dose were sprayed on the
bees and their life span was monitored.. Only water is sprayed onto the control
bees. Spray results were monitored every 12 hours and followed up to the day of
death. The bees were fed with 2M sugared water and normal water during the time
they lived. The change of the length of life of the control bees compared to
the bees that were exposed to drugs with this method was identified. At the end
of the study, all bees that received the highest dose dies within 12 hours
while in the control group, the average was 16 days in Anatolian bees and 15
days in Caucasian bees. The average life span of bees sprayed with pesticide is
6 days in average Anatolia and 5 days in Caucasus. The relationship between
dose and the length of life was pretty high (In Anatolian Bee R²=0.9745, In
Caucasian Bee R²=0,9439). The decay rate in the length of bees that received
all pesticide doses were found %62,70 in Anatolian bees and %64.10 in Caucasian
bee compared to control group.

References

  • Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Settele, J. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785): 351-354.
  • Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., Potts, S.G. 2010. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11: 106-115.
  • Chauzat, M.P., Jacques, A., Laurent, M., Bougeard, S., Hendrikx, P., Ribière-Chabert, M. 2016. Risk indicators affecting honey bee colony survival in Europe: One year of surveillance. Apidologie, 47: 348-378.
  • Cornman, R.S., Tarpy, D.R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J.S., Evans, J.D. 2012. Pathogen webs in collapsing honey bee colonies. PLoS one, 7(8): e43562.
  • Cressey, D. 2013. Europe Debates Risk to Bees. Nature 496: 408.
  • Cresswell, J.E., Page, C.J., Uygun, M.B., Holmbergh, M., Li, Y., Wheeler, J.G., Laycock, I., Pook, C.J., De Ibarra, N.H., Smirnoff, N., Tyler, C.R. 2012. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115: 365-371. Dag, A. 2009. Interaction between pollinators and crop plants: the Israeli experience. Isr. J. Plant Sci. 57: 231-242.
  • Decourtye, A., Lacassie, E., Pham-Delègue, M.H. 2003. Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manage. Sci. 59: 269-278.
  • Dickel, F., Münch, D., Amdam, G.V., Mappes, J., Freitak, D. 2018. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One, 13(1): e0191256.
  • Dively, G.P., Embrey, M.S., Kamel, A., Hawthorne, D.J., Pettis, J.S. 2015. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10: e0118748.
  • Godfray, H.C.J., Blacquiere, T., Field, L.M., Hails, R.S., Petrokofsky, G., Potts, S.G., McLean, A.R. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. In Proc. R. Soc. B (281(1786): 20140558). The Royal Society.
  • Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1255957.
  • Gray, A., Peterson, M. 2017. Investigating honey bee colony losses from surveys of beekeepers. In Royal Statistical Society Conference, 4-7 September 2017, Glasgow.
  • Győri, J., Farkas, A., Stolyar, O., Székács, A., Mörtl, M., Vehovszky, Á. 2017. Inhibitory effects of four neonicotinoid active ingredients on acetylcholine esterase activity. Acta Biologica Hungarica, 68(4): 345-357.
  • Henry, M., Cerrutti, N., Aupinel, P., Decourtye, A., Gayrard, M., Odoux, J.F., Bretagnolle, V. 2015. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. In Proc. R. Soc. B (282(1819): 20152110). The Royal Society.
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A. 2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food. Chem. 59: 2897-2908.
  • Karahan, A., Çakmak, I., Hranitz, J.M., Karaca, I., Wells, H. 2015. Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology, 24(9): 2017-2025.
  • Karahan, A., Karaca, İ. 2016. Adana ve Konya illerindeki arıcılık faaliyetleri ve koloni kayıpları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2).
  • Kavak, G. 2016. Son yıllarda görülen koloni kayıpları ve muhtemel sebepleri. Uludağ Arıcılık Dergisi, 15(1): 33-40. Long, E.Y., Krupke, C.H. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications 7, Article number: 11629 doi:10.1038/ncomms11629.
  • Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Sattelle, D.B. 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotechnol Biochem 69: 1442-1452.
  • Matsuda, K., Kanaoka, S., Akamatsu, M., Sattelle, D.B. 2009. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76: 1-10.
  • Mitchell, E.A.D., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., Aebil, A. 2017. A worldwide survey of neonicotinoids in honey. Science 358(6359): 109-111.
  • Mogren, C.L., Lundgren, G.J. 2016. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Scientific Reports 6, Article number: 29608(2016) doi:10.1038/srep29608.
  • Muz, D., Muz, M. 2017. Investigation of some pathogens "colony loss syndrome" resembled losses apiaries in Tekirdağ. Kocatepe Veteriner Dergisi 10(2017): 21-28.
  • Oliver, T.H., Isaac, N.J., August, T.A., Woodcock, B.A., Roy, D.B., Bullock, J.M. 2015. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 6: 10122.
  • Özbek, H. 2010. Arılar ve insektisitler. Uludağ Arıcılık Dergisi Kasım 2010 / Uludag Bee Journal, 10(3): 85-95.
  • Özdemir, N. 2017. Neonikotinoid pestisitler ve arı sağlığına etkileri. Uludağ Arıcılık Dergisi, 17(1): 44-48.
  • Peng, Y.C., Yang, E.C. 2016. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies. Scientific Reports 6, Article number: 19298.
  • Pettis, J.S., Van Engelsdorp, D., Johnson, J., Dively, G. 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. 99: 153-158.
  • Phelps, J.D., Strang, C.G., Gbylik-Sikorska, M., Sniegocki, T., Posyniak, A., Sherry, D.F. 2017. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 1-13.
  • Pilling, E., Campbell, P., Coulson, M., Ruddle, N., Tornier, I. 2013. A Four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS ONE 8(10): e77193. https://doi.org/10.1371/journal.pone.0077193.
  • Renaud, M., Akeju, T., Natal-da-Luz, T., Leston, S., Rosa, J., Ramos, F., Azevedo-Pereira, H.M. 2018. Effects of the neonicotinoids acetamiprid and thiacloprid in their commercial formulations on soil fauna. Chemosphere, 194: 85-93.
  • Sanchez-Bayo, F., Goka, K. 2014. Pesticide residues and bees–a risk assessment. Plos one, 9(4): e94482.
  • Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. 2016. Are bee diseases linked to pesticides? A brief review. Environment international, 89: 7-11.
  • Sarıtaş, E., Ay, R. 2016. Panonychus ulmi (Koch) ve Neoseiulus californicus (Mc Gregor)’un üreme gücü ve yaşam sürelerine bazı pestisitlerin etkisi: hormoligosis. Türkiye Entomoloji Dergisi, 40(1), 97-106.
  • Schmuck, R. 2001. Ecotoxicological profile of the insecticide thiacloprid. Pflschutz Nachr. Bayer Engl Edn 54: 161-184. Schuld, M., Schmuck, R. 2000. Ecotoxicology. Effects of thiacloprid, a new chloronicotinyl insecticide, on the egg parasitoid trichogramma cacaoeciae. 9: 197.
  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research. 2015(22): 5-34. pmid:25233913.
  • Stokstad, E. 2007. The case of the empty hives. Science 316: 970-972.
  • Tison, L., Holtz, S., Adeoye, A., Kalkan, Ö., Irmisch, N.S., Lehmann, N,. Menzel, R. 2017. Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees. Journal of Experimental Biology, 220(20): 3695-3705.
  • Ünal, H.H., Oruç, H.H., Sezgin, A., Kabil, E. 2010. Türkiye’de 2006-2010 yılları arasında, bal arılarında görülen ölümler sonrasında tespit edilen pestisitler. Uludağ Arıcılık Dergisi Kasım 2010 / Uludag Bee Journal, 10(4): 119-125.
  • Van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charrie`re, J.D., Chlebo, R., Wilkins, S. 2012. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. Journal of Apicultural Research, 51: 100-114.
  • Van der Zee, R., Brodschneider, R., Brusbardis, V., Charrie`re, J.D., Chlebo, R., Coffey, M.F., Gray, A. 2014. Results of international standardized beekeeper surveys of colony losses for winter 2012–2013: Analysis of winter loss rates and mixed effects modelling of risk factors for winter. Journal of Apicultural Research, 53: 19-34.
  • Van Engelsdorp, D., Meixner, M.D. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.
  • Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J.L., Belzunces, L.P. 2011. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS one, 6(6): e21550. Wu-Smart, J., Spivak, M. 2016. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports, 6: 32108.
  • Yıldırım, E. 2012. Tarımsal Zararlılarla Mücadele Yöntemleri ve İlaçlar. 3. Baskı. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 219, Ziraat Fakültesi Ofset Tesisi, Erzurum,
There are 44 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Ahmed Karahan

Mehmet Ali Kutlu This is me

İsmail Karaca This is me

Publication Date July 26, 2018
Submission Date March 7, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

APA Karahan, A., Kutlu, M. A., & Karaca, İ. (2018). Thiacloprid’in, Anadolu Bal Arısı (Apis mellifera anatoliaca) ve Kafkas Bal Arısı (Apis mellifera causica)’nın Yaşam Sürelerine Etkileri. Turkish Journal of Agricultural and Natural Sciences, 5(3), 245-252. https://doi.org/10.30910/turkjans.448343