Research Article
BibTex RIS Cite

Combined Salt and Nickel Stress Impact on ROS Generation and Antioxidant Enzymes Activities of Lemon Balm (Melissa officinalis)

Year 2019, Volume: 6 Issue: 1, 97 - 105, 21.01.2019
https://doi.org/10.30910/turkjans.515361

Abstract

Plants acclimation to stress is a complex process and this complexity increase with simultaneous
subjection to two or more abiotic stress. Salinity and excess accumulation of nickel are growth and development
restricted abiotic stress agents. The aim of the present study was to determine the antioxidant defense system
responses of Melissa officinalis (lemon balm) to salinity, nickel and their combinations. Growth, leaf osmotic
potential, chlorophyll fluorescence, relative water content (RWC), lipid peroxidation, H2O2 and proline content
and antioxidant enzyme activities were determined under these stress conditions. Growth and leaf osmotic
potential negatively affected due to the combined effect of salt and nickel. All three stress treatments did not
show any significant change on RWC and chlorophyll fluorescence in lemon balm. H2O2 content and lipid
peroxidation of combined stress had greater than salt and nickel alone. Total activities of ascorbate peroxidase
(APX) and glutathione reductase (GR) were increased with salt, nickel and their combinations. Moreover, the
reduction in superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities resulted in higher lipid
peroxidation and H2O2 content under the combined stress. To the best of our knowledge, this is the first study
conducted on the activities of antioxidant defense enzymes of lemon balm under salinity and nickel
combinations.

References

  • Aebi, H. 1984. Catalase In Vitro. In: Methods in Enzymology. (eds) Colowick, S.P., Kaplan, N.O., Orlando: Academic Press, pp.114-121.
  • Amooaghaie, R., Roohollahi, S.H. 2017. Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress. Photosynthetica, 55(1): 153-163.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287.
  • Boneza, M.M., Niemeyer, E.D. 2018. Cultivar affects the phenolic composition and antioxidant properties of commercially available lemon balm (Melissa officinalis L.) varieties. Industrial Crops and Products, 112: 783-789.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Capecka, E., Mareczek, A., Leja, M. 2005. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93: 223-226.
  • Flanagan, L.B., Jefferiers, R.L. 1988. Stomatal limitation of photosynthesis and reduced growth of the halophyte Plantago maritima L. at high salinity. Plant, Cell & Environment, 11: 239-245.
  • Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21-25.
  • Foyer, C.H., Noctor, G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155: 2-18.
  • Heath, R. L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125: 189-198.
  • Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. 2002. A modern tool for classical plant growth analysis. Annals of Botany, 90: 485-488.
  • Greenway, H., Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Biology, 31: 149-190.
  • Kazemi, N., Khavari-Nejad, R.A., Fahimi, H., Saadatmand, S., Nejad-Sattari, T. 2010. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Scientia Horticulturae, 126: 402-407.
  • Liu, J., Lu, B., Xun, A.L. 2000. An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27: 548-551.
  • Maivan, E.S., Radjabian, T., Abrishamchi, P., Talei, D. 2017. Physiological and biochemical responses of Melissa officinalis L. to nickel stress and the protective role of salicylic acid. Archives of Agronomy and Soil Science, 63(3): 330-343.
  • Mika, A., Lüthje, S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132: 1489-1498.
  • Miraj, S., Rafieian-Kopaei, M., Kiani, S. 2017. Melissa officinalis L: A review study with an antioxidant prospective. Journal of Evidence-Based Complementary & Alternative Medicine, 22(3): 385-394.
  • Mittler, M. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. 2004. The reactive oxygen gene network in plants. Trends in Plant Science, 9: 490-498.
  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11: 15-19.
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.
  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R., Hancock, J. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53: 1237-1247.
  • Ozturk, A., Unlukara, A., Ipek, A., Gurbuz, B. 2004. Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pakistan Journal of Botany, 36(4): 787-792.
  • Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Radácsi, P., Szabó, K., Szabó, D., Trócsányi, E., Németh-Zámbori, E. 2016. Effect of water deficit on yield and quality of lemon balm (Melissa officinalis L.). Zemdirbyste-Agriculture, 103(4): 385-390.
  • Rahimi, M., Kordrostami, M., Maleki, M., ModaresKia, M. 2016. Investigating the effect of drought stress on expression of WRKY1 and EREBP1 genes and antioxidant enzyme activities in lemon balm (Melissa officinalis L.). 3 Biotech, 6(1): 99.
  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inze, D., Mittler, R. 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase. Plant Journal, 32: 329-342.
  • Santa-Cruz, A., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin, M.C. 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype, Plant Science, 162: 825-831.
  • Seckin, B., Turkan, I., Sekmen, A.H., Ozfidan, C. 2010. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69: 76-85.
  • Sekmen, A.H., Ozgur, R., Uzilday, B., Turkan, I. 2014. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99: 141-149.
  • Seregin, I.V., Kozhevnikova, A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2): 257-277.
  • Shakeri, A., Sahebkar, A., Javadi, B., 2016. Melissa officinalis L. -A review of its traditional uses: phytochemistry and pharmacology. Journal of Ethnopharmacology, 188: 204-228.
  • Sharma, A., Dhiman, A. 2013. Nickel and cadmium toxicity in plants. Journal of Pharmaceutical and Scientific Innovation, 2: 20-24.
  • Singh, G., Agnihotri, R.K., Reshma, R.S. Ahmad, M. 2012. Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings. International Journal of Plant Physiology and Biochemistry, 4(6): 136-141.
  • Turkan, I., Bor, M., Ozdemir, F., Koca, H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223-231.
  • Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that effect plant water status. The Plant Journal, 45: 523-539.
  • Wang, H., Feng, T., Peng, X., Yan, M., Tang, X., 2009. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety, 72(5): 1354-1362.
  • Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162: 2-12.

Kombine Tuz ve Nikel Stresinin Limon Otu (Melissa officinalis)'nun ROS Üretimi ve Antioksidan Enzim Aktiviteleri Üzerine Etkisi

Year 2019, Volume: 6 Issue: 1, 97 - 105, 21.01.2019
https://doi.org/10.30910/turkjans.515361

Abstract

Bitkilerin strese alışması karmaşık bir süreçtir ve bu karmaşıklık iki veya daha fazla abiyotik strese aynı anda maruz kalındığında artar. Tuzluluk ve aşırı nikel birikimi büyüme ve gelişimi sınırlandıran abiyotik ajanlardır. Bu çalışmanın amacı, Melissa officinalis (limon otu) bitkisinde tuzluluk, nikel ve bunların kombinasyonlarına karşı antioksidan savunma sistem cevaplarını belirlemektir. Bu stres koşulları altında, büyüme, yaprak ozmotik potansiyeli, klorofil floresansı, nisbi su içeriği (RWC), lipid peroksidasyonu, H2O2 ve prolin içeriği ve antioksidan savunma enzimleri belirlenmiştir. Büyüme ve yaprak osmotik potansiyeli tuz ve nikel kombinasyonları nedeniyle olumsuz etkilenmiştir. Her üç stres uygulaması, limon otunun RWC ve klorofil floresansında önemli değişiklik göstermemiştir. Birleşik stres altındaki H2O2 içeriği ve lipid peroksidasyonu, tuz ve nikelin tekli uygulamalarından daha yüksektir. Askorbat peroksidaz (APX) ve glutatyon redüktaz (GR)’ın toplam aktiviteleri tuz, nikel ve kombinasyonları ile artmıştır. Dahası, süperoksit dismutaz (SOD), peroksidaz (POX) ve katalaz (CAT) aktivitelerindeki düşüş, birleşik stres altında yüksek lipid peroksidasyonu ve H2O2 içeriğinin artması ile sonuçlanmıştır. Bildiğimiz en iyi şekilde, bu çalışma tuzluluk ve nikel stresleri kombinasyonları altında limon otunun antioksidan savunma enzim aktivitelerinin yürütüldüğü ilk çalışmadır.

References

  • Aebi, H. 1984. Catalase In Vitro. In: Methods in Enzymology. (eds) Colowick, S.P., Kaplan, N.O., Orlando: Academic Press, pp.114-121.
  • Amooaghaie, R., Roohollahi, S.H. 2017. Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress. Photosynthetica, 55(1): 153-163.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287.
  • Boneza, M.M., Niemeyer, E.D. 2018. Cultivar affects the phenolic composition and antioxidant properties of commercially available lemon balm (Melissa officinalis L.) varieties. Industrial Crops and Products, 112: 783-789.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Capecka, E., Mareczek, A., Leja, M. 2005. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93: 223-226.
  • Flanagan, L.B., Jefferiers, R.L. 1988. Stomatal limitation of photosynthesis and reduced growth of the halophyte Plantago maritima L. at high salinity. Plant, Cell & Environment, 11: 239-245.
  • Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21-25.
  • Foyer, C.H., Noctor, G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155: 2-18.
  • Heath, R. L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125: 189-198.
  • Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. 2002. A modern tool for classical plant growth analysis. Annals of Botany, 90: 485-488.
  • Greenway, H., Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Biology, 31: 149-190.
  • Kazemi, N., Khavari-Nejad, R.A., Fahimi, H., Saadatmand, S., Nejad-Sattari, T. 2010. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Scientia Horticulturae, 126: 402-407.
  • Liu, J., Lu, B., Xun, A.L. 2000. An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27: 548-551.
  • Maivan, E.S., Radjabian, T., Abrishamchi, P., Talei, D. 2017. Physiological and biochemical responses of Melissa officinalis L. to nickel stress and the protective role of salicylic acid. Archives of Agronomy and Soil Science, 63(3): 330-343.
  • Mika, A., Lüthje, S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132: 1489-1498.
  • Miraj, S., Rafieian-Kopaei, M., Kiani, S. 2017. Melissa officinalis L: A review study with an antioxidant prospective. Journal of Evidence-Based Complementary & Alternative Medicine, 22(3): 385-394.
  • Mittler, M. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. 2004. The reactive oxygen gene network in plants. Trends in Plant Science, 9: 490-498.
  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11: 15-19.
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.
  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R., Hancock, J. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53: 1237-1247.
  • Ozturk, A., Unlukara, A., Ipek, A., Gurbuz, B. 2004. Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pakistan Journal of Botany, 36(4): 787-792.
  • Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Radácsi, P., Szabó, K., Szabó, D., Trócsányi, E., Németh-Zámbori, E. 2016. Effect of water deficit on yield and quality of lemon balm (Melissa officinalis L.). Zemdirbyste-Agriculture, 103(4): 385-390.
  • Rahimi, M., Kordrostami, M., Maleki, M., ModaresKia, M. 2016. Investigating the effect of drought stress on expression of WRKY1 and EREBP1 genes and antioxidant enzyme activities in lemon balm (Melissa officinalis L.). 3 Biotech, 6(1): 99.
  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inze, D., Mittler, R. 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase. Plant Journal, 32: 329-342.
  • Santa-Cruz, A., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin, M.C. 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype, Plant Science, 162: 825-831.
  • Seckin, B., Turkan, I., Sekmen, A.H., Ozfidan, C. 2010. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69: 76-85.
  • Sekmen, A.H., Ozgur, R., Uzilday, B., Turkan, I. 2014. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99: 141-149.
  • Seregin, I.V., Kozhevnikova, A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2): 257-277.
  • Shakeri, A., Sahebkar, A., Javadi, B., 2016. Melissa officinalis L. -A review of its traditional uses: phytochemistry and pharmacology. Journal of Ethnopharmacology, 188: 204-228.
  • Sharma, A., Dhiman, A. 2013. Nickel and cadmium toxicity in plants. Journal of Pharmaceutical and Scientific Innovation, 2: 20-24.
  • Singh, G., Agnihotri, R.K., Reshma, R.S. Ahmad, M. 2012. Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings. International Journal of Plant Physiology and Biochemistry, 4(6): 136-141.
  • Turkan, I., Bor, M., Ozdemir, F., Koca, H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223-231.
  • Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that effect plant water status. The Plant Journal, 45: 523-539.
  • Wang, H., Feng, T., Peng, X., Yan, M., Tang, X., 2009. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety, 72(5): 1354-1362.
  • Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162: 2-12.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hülya Torun

Publication Date January 21, 2019
Submission Date November 28, 2018
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Torun, H. (2019). Combined Salt and Nickel Stress Impact on ROS Generation and Antioxidant Enzymes Activities of Lemon Balm (Melissa officinalis). Türk Tarım Ve Doğa Bilimleri Dergisi, 6(1), 97-105. https://doi.org/10.30910/turkjans.515361