Research Article
BibTex RIS Cite

Development of Future’s Two Model Plant (Lettuce and Potato) in Diluted Seawater In Vitro and In Vivo Conditions

Year 2020, Volume: 7 Issue: 1, 178 - 185, 25.01.2020
https://doi.org/10.30910/turkjans.680057

Abstract

97 percent of all waters is salt water consisting of sea and oceans. Lettuce, which is a leafy vegetable plant which is very quickly consumed and potato consumed very much, can be used as a future’s model plant. Five different seawater concentrations (0%, 5%, 10%, 20%, 40%) were used in both lettuce and potato. The seedlings belonging to the curly lettuce Fiyonk were planted in pots and were irrigated with water containing different seawater concentrations when they reached 2-3 real leaf stages. In potato plants grown in tissue culture, MS media containing five different seawater concentrations were prepared and the growth status of the plants as a result of 45 days growth periods was investigated. According to the results of the study, 5 % (EC 3.2 dS m-1) and 10 % (EC 6.6 dS m-1) lettuce irrigated with seawater showed better plant growth. In potato, the best development was obtained by 5 % seawater application in Agria variety and by 10 % seawater application in 22-99-33. In controlled conditions, up to 15 % of seawater can be used successfully in lettuce. Culture containing 10 % (EC 6.4 dS m-1) seawater in potato increased the plant growth, and the number of nodes compare to control in tissue culture propagation.

References

  • Afrasiab, H., Iqbal, J. 2010. In vitro techniques and mutagenesis for the genetic improvement of potato cvs. Desiree and Diamant. Pakistan J of Botany, 42(3): 1629-1637.
  • Al-Maskri, A., Al-Kharusi, L., Al-Miqbali, H. 2010. Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International J of Agric and Biology, 12: 377-380.
  • Andriolo, J.L., Luz, G.L., Witter, M.H., Godoi, R.S., Barros, G.T., Bortolotto, O.C. 2005. Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23(4): 931-934.
  • Anonymous, 2015. https://www.soest.hawaii.edu/oceanography/courses/OCN623/Spring%202015/Salinity2015web.pdf
  • Atzori, G., Nissim, W.G., Caparrotta, S., Masi, E., Azzarello, E., Pandolfi, C., Vignolini, P., Gonnelli, C., Mancuso S. 2016. Potential and constraints of different seawater and freshwater blendsas growing media for three vegetable crops. Agric Water Manag, 176: 255-262.
  • Beltran, J.M. 1999. Irrigation with saline water: Benefits and environmental impact. Agric Water Manag, 40:183-194.
  • De Pascale, S., Barbieri, G. 1995. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Sci Hortic, 64: 145-157.
  • Elkazzaz, A.A., Elsadek, M.A., Ebad, F.A. 2016. Induction of in vitro tolerant potato plants to seawater via exchangeable cycles of selection. Egypt. J Biotechnol, 51: 22-36.
  • ElKazzaz, A.A., Ebad, F.A., El-Sadek M.E.A. 2018. Acclimation of potato via ın vitro microtubers versus plantlets under saline conditions. Sci Agri, 21 (2), 49–56.
  • Garrido, Y., Tudela, J.A., Marín, A., Mestre, T., Martínez, V., Gil, M.I. 2014. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J Sci Food Agric, 94: 1592-1599.
  • Freed, R., Einensmith, S.P., Guetz, S., Reicosky, D., Smail, V.W., Wolberg, P. 1989. User’s guide to MSTAT-C analysis of agronomic research experiments. Michigan State University, USA.
  • Gopal, J., Kumar, R., Kang, G.S. 2002. The effectiveness of using a minituber crop for selection of agro-nomic characters in potato breeding programmes. Pot Res, 45 (2-4): 145-151.
  • Gruda, N. 2009. Do soilless culture systems have an influence on product quality of vegetables? J Appl Bot Food Qual, 82: 141-147.
  • Hickman, G.W. 2011. Greenhouse Vegetable Production Statistics: A Review ofCurrent Data on the International Production of Vegetables in Greenhouses.Cuesta Roble greenhouse consultants, Mariposa, CA (pp. 72).
  • Karakoç, B., Kale, S. 2016. The effects of salt levels in ırrigation water with various salt dissolubility on the yield of lettuce (Lactuca sativa). J of Agric Faculty of Süleyman Demirel, 11 (1): 1-7 (with English abstract).
  • Kim, H., Jeong, H., Jeon, J., Bae, S. 2016. Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 8 (127): 1-9.
  • Liu, Z.P., L. Liu, M.D., Chen, L.Q., Deng, G.M., Zhao, Q.Z., Tang, et al. 2003. Study on the irrigation systems in agriculture by seawater. Journal of Natural Resources (in Chinese) 18:423-429.
  • Maas, E.V., Hoffman, G.J. 1977. Crop salt tolerance-current assessment. ASCE J of Irrigation and Drainage Division, 103: 115-134.
  • Mizrahi, Y., Taleisnik, E., Kagan-Zur, V., Zohar, Y., Offenbach, R., Matan, E., Golan, R. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J of Amer Society of Horticul Sci, 113(2): 202-105.
  • Morpurgo, R., Silva-Rodrigues, D. 1987. In vitro differential response of the potato (Solanum tuberosum L.) under sodium chloride stress conditions. Rivista. Dia. Agricoltura. Subtropicale. Etropicale, 81: 73-77.
  • Murshed, R., Najla, S., Albiski, F., Kassem, I., Jbour, M., Al-Said, H. 2015. Using growth parameters for in vitro screening of potato varieties tolerant to salt stress. J Agr Sci Tech, 17: 483-494.
  • Ödemiş, B., Büyüktaş, D., Çalışkan, M.E. 2018. Effects of saline irrigation water and proline applications on yield, vegetative and physiological characteristics of potato crop (Solanum tuberosum L.). Derim, 35(2): 1-10.
  • Özkaynak, E. 2015. Effectiveness of selection at transplant and minituber crop level in potato (Solanum tuberosum L.). Selcuk J. Agr. Food Sci, 29(1): 10-14.
  • Özkaynak, E., Orhan, Y., Şimşek, T. 2018. Determination of yield performance of early and main season potato commercial candidate varieties. Fresenius Environmental Bulletin, 27(5): 387-393.
  • Pasternak, D., De Malach, Y., Borovic, I., Shram, M., Aviram, C. 1986. Irrigation with brackish water under desert conditions. IV. Salt tolerance studies with lettuce (Lactuca sativa L.) Agric Water Manag, 11:303-311.
  • Ramírez, D.A., Kreuze, J., Amoros, W., Valdivia-Silva, J. E., Ranck, J., Garcia, S., Salas, E., Yactayo, W. 2018. Extreme salinity as a challenge to growpotatoes under Mars-like soil conditions: targeting promising genotypes. International J of Astrobiology, 1-7.
  • Sakamoto, K., Kogi, M., Yanagisawa, T. 2014. Effects of salinity and nutrients inseawater on hydroponic culture of red leaf lettuce. Environ Control Biol, 52:189-195.
  • Sasikala, D.P.P., Prasad, P.V.D. 1993. Influence of salinity on axillary bud cultures of six lowland tropical cultivars of potato (Solanum tuberosum). Plant Cell and Organ Tissue Culture, 32: 185-191.
  • Shannon, M.C., Grieve, C.M. 1998. Tolerance of vegetable crops to salinity. Sci Hortic 78: 5-38.
  • Turhan, A., Kuscu, H., Özmen, N., Serbeci, M.S., Demir, A.O. 2014. Effect of different concentrations of iluted seawater on yield and quality of lettuce. Chilean J of Agric Res, 74(1): 111-116.
  • Ünlükara, A., Cemek, B., Karaman, S., Erşahin, S. 2010. Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand J of Crop and Hortic Sci 36(4): 265-273.
  • Yermiyahu, U., Tal, A., Ben-Gal, A., Bar-Tal, A., Tarchitzky, J., Lahav, O. 2007. Rethinking desalinated water quality and agriculture. Sci 318: 920-921.

In Vitro ve In Vivo Koşullarda Seyreltilmiş Deniz Suyunda Geleceğin İki Model Bitkisinin (Marul ve Patates) Geliştirilmesi

Year 2020, Volume: 7 Issue: 1, 178 - 185, 25.01.2020
https://doi.org/10.30910/turkjans.680057

Abstract

Tüm suların %97’si deniz ve okyanusların oluşturduğu tuzlu sudur. Marul yapraklı bir bitkidir: Marulun hızlı bir şekilde ve patateste çok fazla tüketildiği için geleceğin iki model bitkisi olarak kullanılabilecek bitkilerdir. Patates ve marulda 5 Farklı seyreltilmiş deniz suyu konsantrasyonu (0, % 5, % 10, % 20 ve % 40) kullanılmıştır. Kıvırcık marul çeşidi Fiyonk’a ait fideler saksılara dikilmiş ve 2-3 gerçek yapraklı aşamaya geldiklerinde sulandırılmış deniz suyu ile büyütülmüştür. Doku kültüründe büyütülen patates bitkileri 5 farklı deniz suyu konsantrasyonu içeren MS ortamı hazırlanarak besi ortamında konulmasından sonra, 45 günlük büyüme periyodunda bitkilerin büyüme durumu araştırılmıştır. Araştırma sonuçlarına göre % 5 (EC 3.2 dS m-1) ve % 10 (EC 6.6 dS m-1) deniz suyunda büyütülen marul daha iyi bitki büyümesi göstermiştir. Patateste en iyi gelişme Agria çeşidinde % 5’te, 22-99-33 çeşidinde ise %10 deniz suyunda elde edilmiştir. Kontrollü koşullarda marulda %15 deniz suyu başarılı bir şekilde kullanılabilir. Patateste doku kültürü ile çoğaltmada; kültür ortamında % 10 (EC 6.4 dS m-1) deniz suyu, bitki büyümesini ve boğum sayısını kontrole göre artırmıştır.

References

  • Afrasiab, H., Iqbal, J. 2010. In vitro techniques and mutagenesis for the genetic improvement of potato cvs. Desiree and Diamant. Pakistan J of Botany, 42(3): 1629-1637.
  • Al-Maskri, A., Al-Kharusi, L., Al-Miqbali, H. 2010. Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International J of Agric and Biology, 12: 377-380.
  • Andriolo, J.L., Luz, G.L., Witter, M.H., Godoi, R.S., Barros, G.T., Bortolotto, O.C. 2005. Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23(4): 931-934.
  • Anonymous, 2015. https://www.soest.hawaii.edu/oceanography/courses/OCN623/Spring%202015/Salinity2015web.pdf
  • Atzori, G., Nissim, W.G., Caparrotta, S., Masi, E., Azzarello, E., Pandolfi, C., Vignolini, P., Gonnelli, C., Mancuso S. 2016. Potential and constraints of different seawater and freshwater blendsas growing media for three vegetable crops. Agric Water Manag, 176: 255-262.
  • Beltran, J.M. 1999. Irrigation with saline water: Benefits and environmental impact. Agric Water Manag, 40:183-194.
  • De Pascale, S., Barbieri, G. 1995. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Sci Hortic, 64: 145-157.
  • Elkazzaz, A.A., Elsadek, M.A., Ebad, F.A. 2016. Induction of in vitro tolerant potato plants to seawater via exchangeable cycles of selection. Egypt. J Biotechnol, 51: 22-36.
  • ElKazzaz, A.A., Ebad, F.A., El-Sadek M.E.A. 2018. Acclimation of potato via ın vitro microtubers versus plantlets under saline conditions. Sci Agri, 21 (2), 49–56.
  • Garrido, Y., Tudela, J.A., Marín, A., Mestre, T., Martínez, V., Gil, M.I. 2014. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J Sci Food Agric, 94: 1592-1599.
  • Freed, R., Einensmith, S.P., Guetz, S., Reicosky, D., Smail, V.W., Wolberg, P. 1989. User’s guide to MSTAT-C analysis of agronomic research experiments. Michigan State University, USA.
  • Gopal, J., Kumar, R., Kang, G.S. 2002. The effectiveness of using a minituber crop for selection of agro-nomic characters in potato breeding programmes. Pot Res, 45 (2-4): 145-151.
  • Gruda, N. 2009. Do soilless culture systems have an influence on product quality of vegetables? J Appl Bot Food Qual, 82: 141-147.
  • Hickman, G.W. 2011. Greenhouse Vegetable Production Statistics: A Review ofCurrent Data on the International Production of Vegetables in Greenhouses.Cuesta Roble greenhouse consultants, Mariposa, CA (pp. 72).
  • Karakoç, B., Kale, S. 2016. The effects of salt levels in ırrigation water with various salt dissolubility on the yield of lettuce (Lactuca sativa). J of Agric Faculty of Süleyman Demirel, 11 (1): 1-7 (with English abstract).
  • Kim, H., Jeong, H., Jeon, J., Bae, S. 2016. Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 8 (127): 1-9.
  • Liu, Z.P., L. Liu, M.D., Chen, L.Q., Deng, G.M., Zhao, Q.Z., Tang, et al. 2003. Study on the irrigation systems in agriculture by seawater. Journal of Natural Resources (in Chinese) 18:423-429.
  • Maas, E.V., Hoffman, G.J. 1977. Crop salt tolerance-current assessment. ASCE J of Irrigation and Drainage Division, 103: 115-134.
  • Mizrahi, Y., Taleisnik, E., Kagan-Zur, V., Zohar, Y., Offenbach, R., Matan, E., Golan, R. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J of Amer Society of Horticul Sci, 113(2): 202-105.
  • Morpurgo, R., Silva-Rodrigues, D. 1987. In vitro differential response of the potato (Solanum tuberosum L.) under sodium chloride stress conditions. Rivista. Dia. Agricoltura. Subtropicale. Etropicale, 81: 73-77.
  • Murshed, R., Najla, S., Albiski, F., Kassem, I., Jbour, M., Al-Said, H. 2015. Using growth parameters for in vitro screening of potato varieties tolerant to salt stress. J Agr Sci Tech, 17: 483-494.
  • Ödemiş, B., Büyüktaş, D., Çalışkan, M.E. 2018. Effects of saline irrigation water and proline applications on yield, vegetative and physiological characteristics of potato crop (Solanum tuberosum L.). Derim, 35(2): 1-10.
  • Özkaynak, E. 2015. Effectiveness of selection at transplant and minituber crop level in potato (Solanum tuberosum L.). Selcuk J. Agr. Food Sci, 29(1): 10-14.
  • Özkaynak, E., Orhan, Y., Şimşek, T. 2018. Determination of yield performance of early and main season potato commercial candidate varieties. Fresenius Environmental Bulletin, 27(5): 387-393.
  • Pasternak, D., De Malach, Y., Borovic, I., Shram, M., Aviram, C. 1986. Irrigation with brackish water under desert conditions. IV. Salt tolerance studies with lettuce (Lactuca sativa L.) Agric Water Manag, 11:303-311.
  • Ramírez, D.A., Kreuze, J., Amoros, W., Valdivia-Silva, J. E., Ranck, J., Garcia, S., Salas, E., Yactayo, W. 2018. Extreme salinity as a challenge to growpotatoes under Mars-like soil conditions: targeting promising genotypes. International J of Astrobiology, 1-7.
  • Sakamoto, K., Kogi, M., Yanagisawa, T. 2014. Effects of salinity and nutrients inseawater on hydroponic culture of red leaf lettuce. Environ Control Biol, 52:189-195.
  • Sasikala, D.P.P., Prasad, P.V.D. 1993. Influence of salinity on axillary bud cultures of six lowland tropical cultivars of potato (Solanum tuberosum). Plant Cell and Organ Tissue Culture, 32: 185-191.
  • Shannon, M.C., Grieve, C.M. 1998. Tolerance of vegetable crops to salinity. Sci Hortic 78: 5-38.
  • Turhan, A., Kuscu, H., Özmen, N., Serbeci, M.S., Demir, A.O. 2014. Effect of different concentrations of iluted seawater on yield and quality of lettuce. Chilean J of Agric Res, 74(1): 111-116.
  • Ünlükara, A., Cemek, B., Karaman, S., Erşahin, S. 2010. Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand J of Crop and Hortic Sci 36(4): 265-273.
  • Yermiyahu, U., Tal, A., Ben-Gal, A., Bar-Tal, A., Tarchitzky, J., Lahav, O. 2007. Rethinking desalinated water quality and agriculture. Sci 318: 920-921.
There are 32 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ercan Özkaynak

Publication Date January 25, 2020
Submission Date March 22, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Özkaynak, E. (2020). Development of Future’s Two Model Plant (Lettuce and Potato) in Diluted Seawater In Vitro and In Vivo Conditions. Turkish Journal of Agricultural and Natural Sciences, 7(1), 178-185. https://doi.org/10.30910/turkjans.680057