Research Article
BibTex RIS Cite

Toprakta Bazı Bakterilerin Fosfat Çözünürlüğü ile Organik Asit Üretimi Arasındaki İlişkinin Belirlenmesi

Year 2021, Volume: 8 Issue: 1, 66 - 76, 23.01.2021
https://doi.org/10.30910/turkjans.677316

Abstract

Bitki rizosfer kısmında bulunan Fosfor(P) çözücü mikroorganizmalar, topraktaki bitki tarafından alınamayan çözünmez haldeki P’nin çözünmesini sağlamaktadır. Bu çalışmada 35 farklı bitki rizosfer toprağından izole edilen 117 fosfat çözücü bakterinin in vitro ortamda hücre yoğunlukları ve salgıladıkları organik asitlerin fosfat çözme değerlerine etkileri araştırılmıştır. İzolatların TCP içeren NBRIP besiyerinde fosfat çözme değerlerinin 35.6 ve 387.9 mg L-1 arasında değiştiği tespit edilmiştir. İzolatlar çözdüğü fosfor miktarı ile doğru orantılı şekilde ortamın pH sın 6.8-7.0 dan 4.5-5.7 arasına düşürdükleri görülmüştür. Yüksek derecede fosfat çözen 15 adet bakteri seçilerek tanılaması MALDI-TOF MS tanılama sistemi ile yapılmıştır. Tanısı yapılan izolatlar Enterobacter cloacae(2), diğer izolatlar ise Enterobacter cancerogenus, Enterobacter ludwigii, Enterobacter asburiae, Citrobacter koseri, Staphylococcus epidermidis, Microbacterium laevaniformans, Pseudomonas anguilliseptica, Lelliottia amnigena, Agromyces rhizospherae, Agromyces cerinus ssp cerinus, Arthrobacter tecti, Microbacterium hominis ve Microbacterium liquefaciens şekilinde tanılanmıştır. İzolatların fosfat çözmede en önemli mekanizma olan organik asit(Fumarik asit, Laktik asit, Tartarik asit, Malik asit, Sitrik asit, Glasiyal asetik asit, Suksinik asit ve Maleik asit) sentezlerinin farklı miktarda ve çeşitte olduğu HPLC ile belirlenmiştir. Bakteriler arasındaki Enterobacter cancerogenus toplam organik asitmiktarı(10.758 mg ml-1) en yüksek, Microbacterium liquefaciens izolatı ise en düşük miktarda(2.964 mg ml-1) olarak belirlenmiştir. Aynı zamanda izolatların organik asit olarak yüksek miktarda(5.128-0.652 mg ml-1) laktik asit salgıladıkları belirlenmiştir. Toplam organik asit miktarının izolatların çözdüğü fosfor miktarı ile doğru orantılı pH ile ters orantılı olduğu tespit edilmiştir.

Supporting Institution

Amasya Üniversitesi

Project Number

FMP BAP 18-0373

Thanks

Bu çalışma Amasya Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından FMP BAP 18-0373 no’lu proje kapsamında desteklenmiştir.

References

  • Acevedo, E., Galindo-Castañeda, T., Prada, F., Navia, M., ve Romero, H. M. 2014. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology 80, 26-33.
  • Adesemoye, A. O. ve Kloepper, J. W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied microbiology and biotechnology 85, 1-12.
  • Ahmad, F., Babalola, O. O. ve Tak, H. I. 2012. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms. Analytical and bioanalytical chemistry 404, 1247-1255.
  • An, R. ve Moe, L. A. 2016. Regulation of Pyrroloquinoline Quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Appl. Environ. Microbiol. 82, 4955-4964.
  • Banik, S. ve Ninawe, A. 1988. Phosphate solubilising microorganisms and sediments of a tropical estuary and the adjacent coastal Arabian Sea in relation to their physicochemical properties. Journal of the Indian Society of Coastal Agricultural Research 6, 75-85.
  • Barton, C. J. 1948. Photometric analysis of phosphate rock. Analytical Chemistry 20, 1068-1073.
  • Bevilacqua, A. ve Califano, A. 1989. Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science 54, 1076-1076.
  • Chen, Y., Rekha, P., Arun, A., Shen, F., Lai, W.-A.ve Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology 34, 33-41.
  • Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture 12, 185-193.
  • Goldstein, A. H., Braverman, K.ve Osorio, N. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology 30, 295-300.
  • Gyaneshwar, P., Kumar, G. N., Parekh, L. ve Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and soil 245, 83-93.
  • Halder, A.ve Chakrabartty, P. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia microbiologica 38, 325-330.
  • Halder, A., Mishra, A., Bhattacharyya, P. ve Chakrabartty, P. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology 36, 81-92.
  • Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Suh, J. S., ve Kim, K. Y. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Current microbiology 47, 0087-0092.
  • Illmer, P.ve Schinner, F. 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry 27, 257-263.
  • Joshi, P., Joshi, G. K., Mishra, P. K., Bisht, J. K.ve Bhatt, J. C. 2014. Diversity of cold tolerant phosphate solubilizing microorganisms from North Western Himalayas. In "Bacterial Diversity in Sustainable Agriculture", pp. 227-264. Springer.
  • Kapri, A.ve Tewari, L. 2010. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology 41, 787-795.
  • Kim, K. Y., Jordan, D.ve McDonald, G. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry 30, 995-1003.
  • Kpomblekou-a, K. ve Tabatabai, M. 1994. Effect of organic acids on release of phosphorus from phosphate rocks1. Soil Science 158, 442-453.
  • Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C. ve Negi, S. 2012. Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent research in science and technology 4.
  • Küsek, M. 2007. Asmada (Vitis vinifera L.) Ura Neden Olan Agrobacterium vitis’ in tanılanması ve mücadele olanaklarının araştırılması. Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Doktora Tezi.
  • Liu, S.-t., Lee, L.-y., Tai, C.-y., Hung, C.-h., Chang, Y.-s., Wolfram, J. H., Rogers, R., ve Goldstein, A. H. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology 174, 5814-5819.
  • Mardad, I., Serrano Delgado, A. ve Soukri, A. 2013. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626-635.
  • Marra, L. M., de Oliveira-Longatti, S. M., Soares, C. R. F. S., Olivares, F. L.ve Moreira, F. M. d. S. 2019. The Amount of Phosphate Solubilization Depends on the Strain, C-Source, Organic Acids and Type of Phosphate. Geomicrobiology Journal 36, 232-242.
  • Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters 170, 265-270.
  • Nautiyal, C. S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R. ve Verma, D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182, 291-296.
  • Pavlovic, M., Konrad, R., Iwobi, A. N., Sing, A., Busch, U. ve Huber, I. 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS microbiology letters 328, 46-53.
  • Rashid, M., Khalil, S., Ayub, N., Alam, S. ve Latif, F. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7, 187-196.
  • Rodrı́guez, H. ve Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances 17, 319-339.
  • Santana, C., Piccirillo, C., Pereira, S., Pullar, R., Lima, S.ve Castro, P. 2019. Employment of phosphate solubilising bacteria on fish scales–Turning food waste into an available phosphorus source. Journal of Environmental Chemical Engineering 7, 103403.
  • Sharpley, A. N. 1995. Soil phosphorus dynamics: agronomic and environmental impacts. Ecological Engineering 5, 261-279.
  • Spss, I. 2011. IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp 440.
  • Vassilev, N. ve Vassileva, M. 2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology 61, 435-440.
  • Vassilev, N., Vassileva, M.ve Nikolaeva, I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied microbiology and biotechnology 71, 137-144.
  • Zaheer, A., Malik, A., Sher, A., Qaisrani, M. M., Mehmood, A., Khan, S. U., Ashraf, M., Mirza, Z., Karim, S.ve Rasool, M. 2019. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi Journal of Biological Sciences.
  • Zeng, Q., Wu, X.ve Wen, X. 2016. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2. Current microbiology 72, 198-206.
Year 2021, Volume: 8 Issue: 1, 66 - 76, 23.01.2021
https://doi.org/10.30910/turkjans.677316

Abstract

In this study, were investigated the effects of 117 phosphate solubilising bacteria isolated from 35 different plant rhizosphere soil on phosphate solubilising the cell density and the release of organic acids at the in vitro conditions. It was determined that the phosphate solubilising containing TCP ranged between 35.6 and 387.9 mg L-1 values of the isolates in the NBRIP medium. It was observed that the pH of the medium decreased from 6.8-7.0 to 4.5-5.7 in accurate ratio with the amount of phosphorus solubilising. 15 high phosphorus solubilising bacteria were selected and identified by MALDI-TOF MS identification system. Among the identified isolates as Enterobacter cloacae(2),Enterobacter cancerogenus, Enterobacter ludwigii, Enterobacter asburiae, Citrobacter koseri, Staphylococcus epidermidis, Microbacterium laevaniformans, Pseudomonas anguilliseptus, lagus spp. Microbacterium liquefaciens. The synthesis of organic acid(Fumaric acid, Lactic acid, Tartaric acid, Malic acid, Citric acid, Glasial acetic acid, Succinic acid and Maleic acid) which is the most important mechanism in phosphate solubilising of isolates, was determined by HPLC. Among the bacteria Enterobacter cancerogenus total amount of organic acid (10.758 mg ml-1) was the highest, the lowest amount of Microbacterium liquefaciens (2.964 mg ml-1) was determined. It was determined that total amount of organic acid was directly proportional to the amount of phosphorus solubilising by isolates and inversely proportional to pH. It was also determined that the isolates secrete high amounts of lactic acid (5.128-0.652 mg ml-1) as organic acid.

Project Number

FMP BAP 18-0373

References

  • Acevedo, E., Galindo-Castañeda, T., Prada, F., Navia, M., ve Romero, H. M. 2014. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology 80, 26-33.
  • Adesemoye, A. O. ve Kloepper, J. W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied microbiology and biotechnology 85, 1-12.
  • Ahmad, F., Babalola, O. O. ve Tak, H. I. 2012. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms. Analytical and bioanalytical chemistry 404, 1247-1255.
  • An, R. ve Moe, L. A. 2016. Regulation of Pyrroloquinoline Quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Appl. Environ. Microbiol. 82, 4955-4964.
  • Banik, S. ve Ninawe, A. 1988. Phosphate solubilising microorganisms and sediments of a tropical estuary and the adjacent coastal Arabian Sea in relation to their physicochemical properties. Journal of the Indian Society of Coastal Agricultural Research 6, 75-85.
  • Barton, C. J. 1948. Photometric analysis of phosphate rock. Analytical Chemistry 20, 1068-1073.
  • Bevilacqua, A. ve Califano, A. 1989. Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science 54, 1076-1076.
  • Chen, Y., Rekha, P., Arun, A., Shen, F., Lai, W.-A.ve Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology 34, 33-41.
  • Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture 12, 185-193.
  • Goldstein, A. H., Braverman, K.ve Osorio, N. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology 30, 295-300.
  • Gyaneshwar, P., Kumar, G. N., Parekh, L. ve Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and soil 245, 83-93.
  • Halder, A.ve Chakrabartty, P. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia microbiologica 38, 325-330.
  • Halder, A., Mishra, A., Bhattacharyya, P. ve Chakrabartty, P. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology 36, 81-92.
  • Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Suh, J. S., ve Kim, K. Y. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Current microbiology 47, 0087-0092.
  • Illmer, P.ve Schinner, F. 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry 27, 257-263.
  • Joshi, P., Joshi, G. K., Mishra, P. K., Bisht, J. K.ve Bhatt, J. C. 2014. Diversity of cold tolerant phosphate solubilizing microorganisms from North Western Himalayas. In "Bacterial Diversity in Sustainable Agriculture", pp. 227-264. Springer.
  • Kapri, A.ve Tewari, L. 2010. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology 41, 787-795.
  • Kim, K. Y., Jordan, D.ve McDonald, G. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry 30, 995-1003.
  • Kpomblekou-a, K. ve Tabatabai, M. 1994. Effect of organic acids on release of phosphorus from phosphate rocks1. Soil Science 158, 442-453.
  • Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C. ve Negi, S. 2012. Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent research in science and technology 4.
  • Küsek, M. 2007. Asmada (Vitis vinifera L.) Ura Neden Olan Agrobacterium vitis’ in tanılanması ve mücadele olanaklarının araştırılması. Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Doktora Tezi.
  • Liu, S.-t., Lee, L.-y., Tai, C.-y., Hung, C.-h., Chang, Y.-s., Wolfram, J. H., Rogers, R., ve Goldstein, A. H. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology 174, 5814-5819.
  • Mardad, I., Serrano Delgado, A. ve Soukri, A. 2013. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626-635.
  • Marra, L. M., de Oliveira-Longatti, S. M., Soares, C. R. F. S., Olivares, F. L.ve Moreira, F. M. d. S. 2019. The Amount of Phosphate Solubilization Depends on the Strain, C-Source, Organic Acids and Type of Phosphate. Geomicrobiology Journal 36, 232-242.
  • Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters 170, 265-270.
  • Nautiyal, C. S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R. ve Verma, D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182, 291-296.
  • Pavlovic, M., Konrad, R., Iwobi, A. N., Sing, A., Busch, U. ve Huber, I. 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS microbiology letters 328, 46-53.
  • Rashid, M., Khalil, S., Ayub, N., Alam, S. ve Latif, F. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7, 187-196.
  • Rodrı́guez, H. ve Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances 17, 319-339.
  • Santana, C., Piccirillo, C., Pereira, S., Pullar, R., Lima, S.ve Castro, P. 2019. Employment of phosphate solubilising bacteria on fish scales–Turning food waste into an available phosphorus source. Journal of Environmental Chemical Engineering 7, 103403.
  • Sharpley, A. N. 1995. Soil phosphorus dynamics: agronomic and environmental impacts. Ecological Engineering 5, 261-279.
  • Spss, I. 2011. IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp 440.
  • Vassilev, N. ve Vassileva, M. 2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology 61, 435-440.
  • Vassilev, N., Vassileva, M.ve Nikolaeva, I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied microbiology and biotechnology 71, 137-144.
  • Zaheer, A., Malik, A., Sher, A., Qaisrani, M. M., Mehmood, A., Khan, S. U., Ashraf, M., Mirza, Z., Karim, S.ve Rasool, M. 2019. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi Journal of Biological Sciences.
  • Zeng, Q., Wu, X.ve Wen, X. 2016. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2. Current microbiology 72, 198-206.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

İdris Bektaş 0000-0001-7409-4837

Project Number FMP BAP 18-0373
Publication Date January 23, 2021
Submission Date January 23, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

APA Bektaş, İ. (2021). Toprakta Bazı Bakterilerin Fosfat Çözünürlüğü ile Organik Asit Üretimi Arasındaki İlişkinin Belirlenmesi. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(1), 66-76. https://doi.org/10.30910/turkjans.677316