Research Article
BibTex RIS Cite

Muz Kabuğu: Katı Faz Fermantasyonunda Bacillus licheniformis VO7 tarafından α-Amilaz Üretimi için Potansiyel bir Substrat

Year 2021, Volume: 8 Issue: 2, 501 - 510, 23.04.2021
https://doi.org/10.30910/turkjans.782230

Abstract

Mikroorganizmalardan elde edilen α-amilazların biyoteknolojik potansiyeli, çeşitli endüstriyel süreçlerde olası biyolojik katalizörler olarak dünya çapında büyük ilgi görmektedir. Bu enzimler gıda, tekstil ve eczacılık gibi çeşitli endüstriyel alanlarında kullanılmaktadır ve günümüz teknolojisi için vazgeçilmez hale gelmiştir. Biyoteknoloji, daha az enerji gerektiren, yenilenebilir hammaddelere ve çevre açısından sağlıklı uygulamalara dayanan yeni endüstriyel prosesler için potansiyel sunar. Alternatif bir enerji kaynağı olan muz atığı, dünya çapında mevcudiyeti nedeniyle dikkat çekiyor. Bu biyolojik atıklar yakındaki gölet, nehir ve karada uygunsuz bir şekilde bertaraf edilerek ciddi sağlık tehlikelerine neden olur. Daha sürdürülebilir bir hammadde kullanımı arayışının bir parçası olarak, katı faz fermantasyonu (KFF) araştırmalarıın odak noktası haline gelmiştir. KFF yöntemi, çevre kirliliğine neden olan tarımsal atıkların kullanılmasını sağlar. Bu çalışmada, Bacillus licheniformis VO7 muz, elma, karpuz ve portakal kabuklarının bulunduğu KFF ortamına transfer edildi. Kullanılan tarımsal atıklar arasında maksimum α-amilaz üretimi muz kabuklarının bulunduğu KFF ortamından elde edildi. Maksimum α-amilaz üretimi 50 °C, pH 6.0 ve 24. saatte 1500 μm parça büyüklüğündeki muz kabuklarının bulunduğu ortamdan elde edildi. Bu sonuçlar ele alındığında, tüketim sonucu meydana gelen muz kabuğu atıklarının katı faz fermantasyonunda (KFF) substrat olarak kullanımı ile Bacillus licheniformis VO7’den α-amilaz üretimi, çevresel ıslah süreçlerinde kullanılmak üzere potansiyel bir aday olarak düşünülebilir.

Thanks

Deneysel çalışmalarda biyolojik materyal olarak kullanılan Bacillus licheniformis VO7 bakterisini Bitlis, Norşin-Budaklı kaplıcalarından izole eden Siirt Üniversitesi Fen Edebiyat Fakültesi Biyoloji Bölümü öğretim üyesi Doç. Dr. Veysi OKUMUŞ’a teşekkürlerimi sunarım.

References

  • Alghabpoor, S.S., Panosyan, H., Popov, Y., Trchounian, A. 2013. Production of thermostable alpha-amylase by Bacillus sp. Iranian S2 using solid state fermentation. Electronic Journal of Natural Sciences, 20 (1): 47-50.
  • Antranikian, G. 2006. Angewandte Mikrobiologie. Springer, Berlin-Heidelberg.
  • Bedan, D.S., Aziz G.M., Al-Saady, A.J.R. 2014. Optimum conditions for α-amylase production by Aspergillus niger mutant isolate using solid state fermentation. Current Research in Microbiology and Biotechnology. 2(4): 450-456.
  • Bernfield P, 1955. Amylases, α and β. In, Methods in Enzymology, Vol. 1, pp. 149-158. Academic Press, New York, USA.
  • Bos, A.V.D., Hamelinck, C. 2014. Greenhouse gas impact of marginal fossil fuel use. Project number: BIENL14773.
  • Casciatori, F.P., Laurentino, C.L., Taboga, S.R., Casciatori, P.A., Thoméo, J.C., 2014. Structural properties of beds packed with agro-industrial solid by-products applicable for solid-state fermentation: experimental data and effects on process performance. Chemical Engineering Journal, 255, 214-224.
  • Choudhury, A.K.R. 2020. Introduction to enzymes, in: Woodhead Publishing Sustainable Technologies for Fashion and Textiles, pp. 75-90.
  • Dojnov, B., Grujić, M., Vujčıć, Z. 2015. Highly efficient production of Aspergillus niger amylase cocktail by solid-state fermentation using triticale grains as a well-balanced substrate. Journal of the Serbian Chemical Society, 80: 1375-1390.
  • El-Bendary, M.A., Moharam, M.E., Mahmoud, D.A.R. 2015. Economic production of polyethylene modifying lipase enzyme under solid state fermentation using banana peels and sand. Biotechnology An Indian Journal, 11(3): 94-101.
  • Farid, M.A.F., Shata, H.M.A.H. 2011. Amylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour. Iranian Journal of Biotechnology, 9(4): 267-274.
  • Gabhane, J., William, S.P., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S. 2013. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Management.34(2):498-503.
  • Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Pandey, A. 2006. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technology and Biotechnology, 44(2): 269-274.
  • Gebregergs, A,, Gebresemati, M., Sahu, O. 2016. Industrial ethanol from banana peels for developing countries: response surface methodology. Pacific Science Review A: Natural Science and Engineering, 18(1): 22-29.
  • Gomi, K., 2019. Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Bioscience Biotechnology and Biochemistry, 83(8): 1385-1401.
  • Haq, I., Jatoi, I., Gill, N.P., Sangrasi, S.A, Komal, H., Ali, N. 2020. Certain extracellular productions in Bacillus subtilis cultures supplemented with banana waste as substrate International Journal of Pharmaceutical and Phytopharmacological Research, 10(3): 99-107.
  • Holker, U., Lenz, J. 2005. Solid-state fermentation-are there any biotechnological advantages? Current Opinion in Microbiology, 8(3): 301-306.
  • Ingale, S., Joshi, S.J., Gupte, A. 2014. Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology, 45(3): 885-892.
  • Issac, R., Prince, R. 2015. Production of alpha-amylase by solid state fermentation using Bacillus cereus MTCC 7524 and Bacillus licheniformis MTCC 7445 from dairy sludge-A comparative study. International Journal of Pharmtech Research, 8 (9): 111-117.
  • Jabeen, M., Rukh, M., Ahmed, S. 2017. Optımızatıon of α-amylase production from banana peel for different fermentation approaches. Fifth International Conference on Chemical Engineering Bioengineering. December 20-22, Dakka, pp. 185-191.
  • Kannana, T.R., Kanagaraj, C. 2019. Molecular characteristic of α-amylase enzymes producing from Bacillus lichenformis (JQ946317) using solid state fermentation. Biocatalysis and Agricultural Biotechnology, 20: 101240.
  • Kavitha, R. 2018. Production of amylase and protease from fruit peels using Bacillus subtilis by solid-state fermentation. International Journal of Scientific Research and Reviews, 7(2): 652-663.
  • Krishna, P.R., Srivastava, A.K., Ramaswamy, N.K., Suprasanna, P., D’Souza, S.F. 2012. Banana peel as substrate for α-amylase production using Aspergillus niger NCIM 616 and process optimization. Indian Journal of Biotechnology, 11: 314-319.
  • Kokab, S., Asghar, M. 2003. Bio-processing of banana peel for α-amylase production by Bacillus subtilis. International Journal of Agriculture and Biology, 8530(4): 411-414.
  • Li, S., Yang, X., Yang, S., Zhu, M., Wang, X. 2012. Technology prospecting on enzymes: application, marketing and engineering, Computational and Structural Biotechnology Journal, 2(3): 1-11.
  • Melnichuk, N., Braia, M.J., Pablo A. 2020. Anselmi, María-Rocío Meini, Diana Romanini, Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Management 106: 155-161.
  • Moat, A.G., Foster, J.W., Spector, M.P. 2002 . Microbial Physiology, 4th ed. Wiley - Less, Inc., New York. 1: 1-28.
  • Mojsov, K. 2012. Microbial alpha-amylases and their industrial applications: a review. International Journal of Management, IT and Engineering, 2(10): 583-609.
  • Mukherjee A.K., Borah, M., Rai, S.K. 2009. To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent. Biochemical Engineering Journal, 43: 149-156.
  • Naik, B., Goyal, S.K., Tripathi, A.D., Kumar, V. 2019. Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatalysis and Agricultural Biotechnology, 22: 101423.
  • Nguyen, K.A., Suwannarach, J.K.N., Penkhrue, W., Lumyong, S. 2019. Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biology Open, 8: bio047183.
  • Noreen, R., Asghar, M., Asad, M.J., Adedayo, O. 2002. Productıon of α-Amylase from banana peel by Bacillus subtilis. Pakistan Journal of Agricultural Science, 39(4): 312-317.
  • Okonko, I.O., Adeola, O.T., Aloysius, F.E., Damilola, A.O., Adewale, O.A. 2009. Utilization of food wastes for sustainable development. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8(4): 263-286.
  • Pranay, K., Padmadeo, S.R., Prasad, B. 2019. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. Biocatalysis and Agricultural Biotechnology, 21: ID 101300.
  • Praveen, K.G., Suneetha, V. 2014. Natural, Culinary Fruit Peels as a Potential substrate for Pectinolytic Enzyme. International Journal of Drug Development and Research, 6(3): 109-118.
  • Rahman, R.N.Z.A., Geok, L.P., Basri, M., Salleh, A.B. 2005. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresource Technology, 96(4): 429-436.
  • Rai, P., Ashutosh Pandey, A., Pandey, A. 2019. Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. International Journal of Hydrogen Energy, 44(47): 25505-25513.
  • Raul, D., Biswas, T., Mukhopadhyay, S., Das, K.S., Gupta, S. 2014. Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemitry Research International, Article ID 568141: 1-5.
  • Reyes, I., Cruz-Sosa, F., Hernandez-Jaimes, C., Vernon-Carter, E.J., Alvarez-Ramirez, J. 2017. Effects of solid-state fermentation (Aspergillus oryzae var. oryzae) on the physicochemical properties of corn starch. Starch, 69(7-8): 1600369.
  • Rodríguez-Couto, S. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnology Journal, 3(7): 859-870.
  • Sadh, P.K., Duhan, S., Duhan, J.S. 2018. Agro‑industrial wastes and their utilization using solid state fermentation: a review Bioresources and Bioprocessing, 5:1. Sahm, H., Antranikian, G., Stahmann, K.P., Takors, R. 2013. Industrielle Mikrobiologie. Springer, Berlin-Heidelberg.
  • Sahnoun, M., Kriaa, M., Elgharbi, F., Ayadi, D.Z., Bejar, S., Kammoun, R. 2015. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: Optimization of culture conditions. International Journal of Biological Macromolecules, 75: 73-80.
  • Santa-Maria, M,, Ruiz-Colorado, A.A., Cruz, G., Jeoh, T. 2013. Assessing the feasibility of biofuel production from lignocellulosic banana waste in rural agricultural communities in Peru and Colombia. Bioenergy Research, 6(3):1000-1011.
  • Sharma, P., Mishra, A.A. 2015. Biofuel production from banana peel by using micro wave. International Journal of Science, Engineering and Technology, 3(4): 1015-1018. Sharma, S., Vaid, S., Bhat, B., Singh, S., Bajaj, B.K. 2019. Thermostable enzymes for industrial biotechnology, Advances in Enzyme Technology, 469-495.
  • Silpa, D., Rao, P.B., Kumar, G.K. 2018. Production and optimization of alpha amylases using banana waste by Bacillus licheniformis DS3 under solid state fermentation. International Journal of Research in BioSciences. 7(3): 18-25.
  • Steudler, S., Werner, A., Walther, T. 2019. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Advances in Biochemical Engineering Biotechnology, 169: 51-81.
  • TÜİK 2019. Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas(Erişim: Şubat 2019).
  • Uygut, M.A., Tanyildizi, M.Ş. 2018. Determination of Effective Parameters for Alpha-Amylase Production in a Modified Rotating Drum Bioreactor. Arabian Journal for Science and Engineering, 43: 3381-3391.
  • Vivekanand, V., Dwivedi, P., Pareek, N., Singh, R.P. 2011. Banana Peel: A Potential Substrate for Laccase Production by Aspergillus fumigatus VkJ2.4.5 in Solid-State Fermentation. Applied Biochemistry and Biotechnology, 165: 204-220.
  • Zhang, Y., Wang, L., Chen, H., 2017. Correlations of medium physical properties and process performance in solid-state fermentation. Chemical Engineering Science, 165: 65-73.
  • Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L. 2013. Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresource Technology, 149: 353-358.

Banana Peel: A Potential Substrate for α-Amylase Production by Bacillus licheniformis VO7 in Solid State Fermentation

Year 2021, Volume: 8 Issue: 2, 501 - 510, 23.04.2021
https://doi.org/10.30910/turkjans.782230

Abstract

The biotechnological potential of α-amylases derived from microorganisms is of great interest worldwide as possible biological catalysts in various industrial processes. These enzymes are used in various industrial fields such as food, textile and pharmacy and have become indispensable for today's technology. Biotechnology offers the potential for new industrial processes that require less energy and are based on renewable raw materialsand environmentally healthy practices. Banana waste, an alternative source of energy, draws attention due to its worldwide availability. These biological wastes are improperly disposed of in nearby ponds, rivers and land, causing serious health hazards. As part of the search for a more sustainable raw material use, solid state fermentation (SFF) has become the focus of research. The SFF method enables the use of agricultural wastes that cause environmental pollution. In this study, Bacillus licheniformis VO7 was transferred to SFF medium containing banana, apple, watermelon and orange peels. Among the agricultural wastes used, the maximum α-amylase production was obtained from SFF medium with banana peels. The maximum α-amylase production was obtained at 50°C, pH 6.0 and at 24 hours from the environment where the banana peels with a particle size of 1500 μm were found. Considering these results, the use of banana peel waste generated as a result of consumption as a substrate in solid phase fermentation (KFF) and α-amylase production from Bacillus licheniformis VO7 can be considered as a potential candidate for use in environmental improvement processes.

References

  • Alghabpoor, S.S., Panosyan, H., Popov, Y., Trchounian, A. 2013. Production of thermostable alpha-amylase by Bacillus sp. Iranian S2 using solid state fermentation. Electronic Journal of Natural Sciences, 20 (1): 47-50.
  • Antranikian, G. 2006. Angewandte Mikrobiologie. Springer, Berlin-Heidelberg.
  • Bedan, D.S., Aziz G.M., Al-Saady, A.J.R. 2014. Optimum conditions for α-amylase production by Aspergillus niger mutant isolate using solid state fermentation. Current Research in Microbiology and Biotechnology. 2(4): 450-456.
  • Bernfield P, 1955. Amylases, α and β. In, Methods in Enzymology, Vol. 1, pp. 149-158. Academic Press, New York, USA.
  • Bos, A.V.D., Hamelinck, C. 2014. Greenhouse gas impact of marginal fossil fuel use. Project number: BIENL14773.
  • Casciatori, F.P., Laurentino, C.L., Taboga, S.R., Casciatori, P.A., Thoméo, J.C., 2014. Structural properties of beds packed with agro-industrial solid by-products applicable for solid-state fermentation: experimental data and effects on process performance. Chemical Engineering Journal, 255, 214-224.
  • Choudhury, A.K.R. 2020. Introduction to enzymes, in: Woodhead Publishing Sustainable Technologies for Fashion and Textiles, pp. 75-90.
  • Dojnov, B., Grujić, M., Vujčıć, Z. 2015. Highly efficient production of Aspergillus niger amylase cocktail by solid-state fermentation using triticale grains as a well-balanced substrate. Journal of the Serbian Chemical Society, 80: 1375-1390.
  • El-Bendary, M.A., Moharam, M.E., Mahmoud, D.A.R. 2015. Economic production of polyethylene modifying lipase enzyme under solid state fermentation using banana peels and sand. Biotechnology An Indian Journal, 11(3): 94-101.
  • Farid, M.A.F., Shata, H.M.A.H. 2011. Amylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour. Iranian Journal of Biotechnology, 9(4): 267-274.
  • Gabhane, J., William, S.P., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S. 2013. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Management.34(2):498-503.
  • Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Pandey, A. 2006. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technology and Biotechnology, 44(2): 269-274.
  • Gebregergs, A,, Gebresemati, M., Sahu, O. 2016. Industrial ethanol from banana peels for developing countries: response surface methodology. Pacific Science Review A: Natural Science and Engineering, 18(1): 22-29.
  • Gomi, K., 2019. Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Bioscience Biotechnology and Biochemistry, 83(8): 1385-1401.
  • Haq, I., Jatoi, I., Gill, N.P., Sangrasi, S.A, Komal, H., Ali, N. 2020. Certain extracellular productions in Bacillus subtilis cultures supplemented with banana waste as substrate International Journal of Pharmaceutical and Phytopharmacological Research, 10(3): 99-107.
  • Holker, U., Lenz, J. 2005. Solid-state fermentation-are there any biotechnological advantages? Current Opinion in Microbiology, 8(3): 301-306.
  • Ingale, S., Joshi, S.J., Gupte, A. 2014. Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology, 45(3): 885-892.
  • Issac, R., Prince, R. 2015. Production of alpha-amylase by solid state fermentation using Bacillus cereus MTCC 7524 and Bacillus licheniformis MTCC 7445 from dairy sludge-A comparative study. International Journal of Pharmtech Research, 8 (9): 111-117.
  • Jabeen, M., Rukh, M., Ahmed, S. 2017. Optımızatıon of α-amylase production from banana peel for different fermentation approaches. Fifth International Conference on Chemical Engineering Bioengineering. December 20-22, Dakka, pp. 185-191.
  • Kannana, T.R., Kanagaraj, C. 2019. Molecular characteristic of α-amylase enzymes producing from Bacillus lichenformis (JQ946317) using solid state fermentation. Biocatalysis and Agricultural Biotechnology, 20: 101240.
  • Kavitha, R. 2018. Production of amylase and protease from fruit peels using Bacillus subtilis by solid-state fermentation. International Journal of Scientific Research and Reviews, 7(2): 652-663.
  • Krishna, P.R., Srivastava, A.K., Ramaswamy, N.K., Suprasanna, P., D’Souza, S.F. 2012. Banana peel as substrate for α-amylase production using Aspergillus niger NCIM 616 and process optimization. Indian Journal of Biotechnology, 11: 314-319.
  • Kokab, S., Asghar, M. 2003. Bio-processing of banana peel for α-amylase production by Bacillus subtilis. International Journal of Agriculture and Biology, 8530(4): 411-414.
  • Li, S., Yang, X., Yang, S., Zhu, M., Wang, X. 2012. Technology prospecting on enzymes: application, marketing and engineering, Computational and Structural Biotechnology Journal, 2(3): 1-11.
  • Melnichuk, N., Braia, M.J., Pablo A. 2020. Anselmi, María-Rocío Meini, Diana Romanini, Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Management 106: 155-161.
  • Moat, A.G., Foster, J.W., Spector, M.P. 2002 . Microbial Physiology, 4th ed. Wiley - Less, Inc., New York. 1: 1-28.
  • Mojsov, K. 2012. Microbial alpha-amylases and their industrial applications: a review. International Journal of Management, IT and Engineering, 2(10): 583-609.
  • Mukherjee A.K., Borah, M., Rai, S.K. 2009. To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent. Biochemical Engineering Journal, 43: 149-156.
  • Naik, B., Goyal, S.K., Tripathi, A.D., Kumar, V. 2019. Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatalysis and Agricultural Biotechnology, 22: 101423.
  • Nguyen, K.A., Suwannarach, J.K.N., Penkhrue, W., Lumyong, S. 2019. Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biology Open, 8: bio047183.
  • Noreen, R., Asghar, M., Asad, M.J., Adedayo, O. 2002. Productıon of α-Amylase from banana peel by Bacillus subtilis. Pakistan Journal of Agricultural Science, 39(4): 312-317.
  • Okonko, I.O., Adeola, O.T., Aloysius, F.E., Damilola, A.O., Adewale, O.A. 2009. Utilization of food wastes for sustainable development. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8(4): 263-286.
  • Pranay, K., Padmadeo, S.R., Prasad, B. 2019. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. Biocatalysis and Agricultural Biotechnology, 21: ID 101300.
  • Praveen, K.G., Suneetha, V. 2014. Natural, Culinary Fruit Peels as a Potential substrate for Pectinolytic Enzyme. International Journal of Drug Development and Research, 6(3): 109-118.
  • Rahman, R.N.Z.A., Geok, L.P., Basri, M., Salleh, A.B. 2005. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresource Technology, 96(4): 429-436.
  • Rai, P., Ashutosh Pandey, A., Pandey, A. 2019. Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. International Journal of Hydrogen Energy, 44(47): 25505-25513.
  • Raul, D., Biswas, T., Mukhopadhyay, S., Das, K.S., Gupta, S. 2014. Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemitry Research International, Article ID 568141: 1-5.
  • Reyes, I., Cruz-Sosa, F., Hernandez-Jaimes, C., Vernon-Carter, E.J., Alvarez-Ramirez, J. 2017. Effects of solid-state fermentation (Aspergillus oryzae var. oryzae) on the physicochemical properties of corn starch. Starch, 69(7-8): 1600369.
  • Rodríguez-Couto, S. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnology Journal, 3(7): 859-870.
  • Sadh, P.K., Duhan, S., Duhan, J.S. 2018. Agro‑industrial wastes and their utilization using solid state fermentation: a review Bioresources and Bioprocessing, 5:1. Sahm, H., Antranikian, G., Stahmann, K.P., Takors, R. 2013. Industrielle Mikrobiologie. Springer, Berlin-Heidelberg.
  • Sahnoun, M., Kriaa, M., Elgharbi, F., Ayadi, D.Z., Bejar, S., Kammoun, R. 2015. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: Optimization of culture conditions. International Journal of Biological Macromolecules, 75: 73-80.
  • Santa-Maria, M,, Ruiz-Colorado, A.A., Cruz, G., Jeoh, T. 2013. Assessing the feasibility of biofuel production from lignocellulosic banana waste in rural agricultural communities in Peru and Colombia. Bioenergy Research, 6(3):1000-1011.
  • Sharma, P., Mishra, A.A. 2015. Biofuel production from banana peel by using micro wave. International Journal of Science, Engineering and Technology, 3(4): 1015-1018. Sharma, S., Vaid, S., Bhat, B., Singh, S., Bajaj, B.K. 2019. Thermostable enzymes for industrial biotechnology, Advances in Enzyme Technology, 469-495.
  • Silpa, D., Rao, P.B., Kumar, G.K. 2018. Production and optimization of alpha amylases using banana waste by Bacillus licheniformis DS3 under solid state fermentation. International Journal of Research in BioSciences. 7(3): 18-25.
  • Steudler, S., Werner, A., Walther, T. 2019. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Advances in Biochemical Engineering Biotechnology, 169: 51-81.
  • TÜİK 2019. Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas(Erişim: Şubat 2019).
  • Uygut, M.A., Tanyildizi, M.Ş. 2018. Determination of Effective Parameters for Alpha-Amylase Production in a Modified Rotating Drum Bioreactor. Arabian Journal for Science and Engineering, 43: 3381-3391.
  • Vivekanand, V., Dwivedi, P., Pareek, N., Singh, R.P. 2011. Banana Peel: A Potential Substrate for Laccase Production by Aspergillus fumigatus VkJ2.4.5 in Solid-State Fermentation. Applied Biochemistry and Biotechnology, 165: 204-220.
  • Zhang, Y., Wang, L., Chen, H., 2017. Correlations of medium physical properties and process performance in solid-state fermentation. Chemical Engineering Science, 165: 65-73.
  • Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L. 2013. Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresource Technology, 149: 353-358.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Nurullah Akcan 0000-0003-3960-9553

Publication Date April 23, 2021
Submission Date August 18, 2020
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Akcan, N. (2021). Muz Kabuğu: Katı Faz Fermantasyonunda Bacillus licheniformis VO7 tarafından α-Amilaz Üretimi için Potansiyel bir Substrat. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(2), 501-510. https://doi.org/10.30910/turkjans.782230