Research Article
BibTex RIS Cite

GAP Bölgesi Koşullarında Atdişi Hibrit Mısır Çeşidine (Zea mays L.) Uygulanan Farklı Azot Gübresi Seviyelerinin Tane Verimi ve Kalite ile Klorofil İçeriklerine Etkisi

Year 2021, Volume: 8 Issue: 3, 655 - 665, 26.07.2021
https://doi.org/10.30910/turkjans.909545

Abstract

En önemli makro elementlerden olan azot (N), yüksek biomass a sahip mısır bitkisinin verim ve kalitesinde önemli bir yere sahiptir. Bu çalışma, Türkiye’nin GAP Bölgesi’nde 2019 ve 2020 yılları arasında atdişi hibrit mısır çeşidinin tane verim, kalite ve klorofil içeriği üzerine farklı azot gübresi seviyelerinin etkilerini belirlemek amacıyla yürütülmüştür. Deneme tesadüf blokları deneme desenine göre 3 tekerrürlü olarak dizayn edilmiştir. Çalışmada, orta erkenci (FAO 600-650) olum grubunda atdişi hibrit mısır çeşidine farklı azot (N) dozları (N0, N100, N200, N300 ve 400 kg ha) uygulanmıştır. İki yıl ortalamalarına göre, incelenen özelliklerde yıllar ve azot seviyeleri arasında istatistiksel olarak önemli farklar elde edilmiştir. Yıl ortalama sonuçlarına göre, bitki boyu (BB, cm), klorofil içeriği (Kİ, SPAD), tane verimi (TV, kg ha) ve tane protein oranı (TPO, %) sırasıyla 219.43 (N0) – 291.91 (N300), 32.90 (N0) – 56.75 (N400), 7791.22 (N0) – 15461.18 (N300) ve 7.93 (N0) – 10.76 (N400) arasında değişmiştir. Araştırmanın birinci yılına nazaran ikinci yılında yaşanan çevresel stres koşullarından (yüksek sıcaklık ve düşük nisbi nem) dolayı, bitkilerin gelişimi olumsuz etkilenirken, TPO değerleri olumlu etkilenmiştir. Azot seviyeleri ile TV ve Kİ arasında yapılan regresyon analizinde, yüksek önemli ve quatratic ilişkiler tespit edilmiştir. Optimum tane verimi N300 uygulamasında elde edilmiştir. Koçan tane doldurma dönemi (KTDD)’de klorofil içerikleri 50 SPAD değerlerini geçmiştir.

Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü (TAGEM)

Project Number

TAGEM/TA/09/07/03/005

Thanks

Çalışma, ülkesel mısır entegre ürün yönetimi GAP bölgesi mısır hat ve çeşit adaptasyon araştırmalarından üretilmiştir. Desteklerinden dolayı Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü ve GAP Tarımsal Araştırma Enstitüsü Müdürlüğüne teşekkür ederiz.

References

  • Adeniyan, O.N. 2014. Effect of different population densities and fertilizer rates on the performance of different maize varieties in two rain forest agro ecosystems of South. West Nigeria. Afr, J. Plant Science, 8 (8): 410-415.
  • Ahmadu, I.A. 2014. Performance of extra-early maize (Zea mays L.) varieties as influenced by rate of nitrogen and intra-row spacing. M. Sc. Thesis, pp.23-45
  • Ahmad, S., Khan, A. A., Kamran, M., Ahmad, I., Ali, S. ve Fahad, S. 2018. Response of maize cultivars to various nitrogen levels. European Journal of Experimental Biology, 8 (1-2): 1-4.
  • Anonim. 2020. Türkiye İstatistik Kurumu. Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020- 33737&dil=1 Erişim tarihi: 10.11.2020.
  • Anonim. 2021. Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) Bitkisel üretim istatistikleri. http://www.fao.org/faostat/en/#data/QC,Erişim tarihi: 01.03.2021.
  • Argenta, G., Silva, P.R.F. ve Sangoi, L. 2004. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Journal of Santa Maria, 34 (5): 1379-1387.
  • Blackmer, T.M. ve Schepers, J.S. 1995. Use of a chlorophyll meter to monitor N status and schedule fertigation of corn. Journal of Production Agriculture, 8(3): 56–60. Chapman, S.C. ve Barreto, H.J. 1995. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal, 89: 557–562
  • Chen, K., Camberato, J.J. ve Vyn, T.J. 2017. Maize grain yield and kernel component relationships to morphophysiological traits in commercial hybrids separated by four decades. Journal of Crop Science, 57:1–17.
  • Dawadi, D.R. ve Sah, S.K. 2012. Growth and yield of hybrid maize (Zea mays L.) in relation to planting density and nitrogen levels during winter season in Nepal. Tropical Agricultural Research, 23(3): 218–227 https://doi.org/10.4038/tar.v23i3.4659
  • Davies, B., Coulter, J.A. ve Paulo, H.P. 2020. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PlosOne, 2:1-19, https://doi.org/10.1371/journal.pone.0233674
  • El-Hosary, A. A., Hammam, G.Y., El-Gedwy, E.S.M., El-Hosary, A.A.A. ve Sidi, M.E. 2019. Response of white maize hybrids to various nitrogen fertilizer rates in Qalyubia, Egypt. Bioscience Research, 16(3): 2475-2485.
  • Eyasu, E., Shanka, D., Dalga, D. ve Elias, E. 2018. Yield response of maize (Zea mays L.) varieties to row spacing under irrigation at Geleko, Ofa Woreda, Wolaita Zone, and Southern Ethiopia. Journal of Experimental Agriculture International, 20 (1): 1 -10.
  • Gholizadeh, A., Saberioon, M., Boruvka, L., Wayayok, A., Wayayok, A. ve Soom M.A.M. 2017. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture, 4(3): 259–268.
  • Gupta, N., Ram, H. ve Kumar B. 2016. Mechanism of zinc absorption in plant: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15:89-109. https://doi.org/10.1007/s1157-016-9390-1
  • Jaynes, D.B. 2013. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen. Agriculture Water Manage, 130: 52–60. https://doi.org/10.1016/j.agwat.2013.08.010
  • Josipovic, M., Plavsic, H., Kovacevic, V., Markovic, M. ve Iljkic, D., 2014. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines. Genetika Journal, 46(1): 243-253.
  • Kandil, A.A., Attia, A.N., EL-Moursy, S.A ve AbdElnaby, M.M. 2016. Yielding and growth parameters of maize (Zea mays L.) as affected by different foliar and nitrogen soil fertilization. Advanced Journal of Agricultural Sciences, 4 (3):13-34.
  • Liu, C., Yao, Z., Wang, K. ve Zheng, X. 2015. Efects of increasing fertilization rates on nitric oxide emission and nitrogen use efciency in low carbon calcareous soil. Agriculture Ecosystem Environment, 203: 83–92.
  • Marković, M., Josipović, M., Šoštarić, J., Jambrović, A. ve Brkić, A. 2017. Response of maize (Zea mays L.) grain yield and yield components to irrigation and nitrogen fertilization. Journal of Central European Agriculture, 18 (1): 55-72.
  • Rashid, M.T., Voroney, P. ve Parkin, G. 2005. Predicting nitrogen fertilizer requirements for corn by chlorophyll meter under different N availability conditions. Canadian Journal of Soil Science, 85(1): 147-159. https://doi.org/10.4141/S04-005
  • Sapkota, A., Shrestha, R.K. ve Chalise, D. 2017. Response of maize to the soil application of nitrogen and phosphorous fertilizers. International Journal of Applied Sciences and Biotechnology, 5(4): 537-541.
  • Scott, J.T., Lambie, S.M., Stevenson, B.A., Schipperc, L.A., Parfittd, R.L. ve McGillb, A.C. 2015. Carbon and nitrogen leaching under high and low phosphate fertility pasture with increasing nitrogen inputs. Agriculture Ecosystems & Environment, 202(1): 139–147. https://doi.org/10.1016/j.agee.2014.12.021
  • Sharanabasappa, H.C., Basavanneppa, M.A. ve Koppalkar, B.G. 2017. Productivity of quality protein maize (Zea mays L.) and soil fertility as influenced by plant population and fertilizer levels under irrigated ecosystem. Int. J. Adv. Biol. Res., 7 (3): 504-508.
  • Sidi, M.E., El Hosary, A.A., Hammam, G.Y., El-Gedwy El Saeed, M. ve El-Hosary, A. A.A. 2019. Maize hybrids yield potential as affected by plant population density in Qalyubia, Egypt. Bioscience Research, 16(2):1565-1576.
  • Sindelar, A.J., Coulter, J.A., Lamb, J.A. ve Vetsch, J.A. 2015. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn. Agronomy Soil Environment Qual., 107: 843–850. https://doi.org/10.2134/agronj14.0535
  • Ten Berge, H.F., Hijbeek, R., Marloes, P., Van Loon, J.R., Tesfaye, K., Zingore, S., Craufurd, P., Van Heerwaarden, J., Brentrup, F., Schroder, J.J. ve Boogaard, H.L. 2019. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23:9–21.
  • Tsai, C.Y., Dweikat, I., Huber, D.M. ve Warren, H.L. 1992. Interrelationship of nitrogen nutrition with maize (Zea mays L.) grain yield, nitrogen use effiiency and grain quality. Journal Science Food Agriculture, 58: 1–8.
  • Worku, A., Derebe, B., Bitew, Y., Chakelie, G. ve Andualem, M. 2020. Response of maize (Zea mays L.) to nitrogen and planting density in Jabitahinan district, Western Amhara region. Cogent Food & Agriculture, 6(1): 1770405.
  • Zeleke, A., Alemayehu, G. ve Yihenew, G.S. 2018. Effects of planting density and nitrogen fertilizer rate on yield and yield related traits of maize (Zea mays L.) in Northwestern, Ethiopia. Advances in Crop Science and Technology, 6 (2): 1 -5.
Year 2021, Volume: 8 Issue: 3, 655 - 665, 26.07.2021
https://doi.org/10.30910/turkjans.909545

Abstract

Project Number

TAGEM/TA/09/07/03/005

References

  • Adeniyan, O.N. 2014. Effect of different population densities and fertilizer rates on the performance of different maize varieties in two rain forest agro ecosystems of South. West Nigeria. Afr, J. Plant Science, 8 (8): 410-415.
  • Ahmadu, I.A. 2014. Performance of extra-early maize (Zea mays L.) varieties as influenced by rate of nitrogen and intra-row spacing. M. Sc. Thesis, pp.23-45
  • Ahmad, S., Khan, A. A., Kamran, M., Ahmad, I., Ali, S. ve Fahad, S. 2018. Response of maize cultivars to various nitrogen levels. European Journal of Experimental Biology, 8 (1-2): 1-4.
  • Anonim. 2020. Türkiye İstatistik Kurumu. Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020- 33737&dil=1 Erişim tarihi: 10.11.2020.
  • Anonim. 2021. Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) Bitkisel üretim istatistikleri. http://www.fao.org/faostat/en/#data/QC,Erişim tarihi: 01.03.2021.
  • Argenta, G., Silva, P.R.F. ve Sangoi, L. 2004. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Journal of Santa Maria, 34 (5): 1379-1387.
  • Blackmer, T.M. ve Schepers, J.S. 1995. Use of a chlorophyll meter to monitor N status and schedule fertigation of corn. Journal of Production Agriculture, 8(3): 56–60. Chapman, S.C. ve Barreto, H.J. 1995. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal, 89: 557–562
  • Chen, K., Camberato, J.J. ve Vyn, T.J. 2017. Maize grain yield and kernel component relationships to morphophysiological traits in commercial hybrids separated by four decades. Journal of Crop Science, 57:1–17.
  • Dawadi, D.R. ve Sah, S.K. 2012. Growth and yield of hybrid maize (Zea mays L.) in relation to planting density and nitrogen levels during winter season in Nepal. Tropical Agricultural Research, 23(3): 218–227 https://doi.org/10.4038/tar.v23i3.4659
  • Davies, B., Coulter, J.A. ve Paulo, H.P. 2020. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PlosOne, 2:1-19, https://doi.org/10.1371/journal.pone.0233674
  • El-Hosary, A. A., Hammam, G.Y., El-Gedwy, E.S.M., El-Hosary, A.A.A. ve Sidi, M.E. 2019. Response of white maize hybrids to various nitrogen fertilizer rates in Qalyubia, Egypt. Bioscience Research, 16(3): 2475-2485.
  • Eyasu, E., Shanka, D., Dalga, D. ve Elias, E. 2018. Yield response of maize (Zea mays L.) varieties to row spacing under irrigation at Geleko, Ofa Woreda, Wolaita Zone, and Southern Ethiopia. Journal of Experimental Agriculture International, 20 (1): 1 -10.
  • Gholizadeh, A., Saberioon, M., Boruvka, L., Wayayok, A., Wayayok, A. ve Soom M.A.M. 2017. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture, 4(3): 259–268.
  • Gupta, N., Ram, H. ve Kumar B. 2016. Mechanism of zinc absorption in plant: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15:89-109. https://doi.org/10.1007/s1157-016-9390-1
  • Jaynes, D.B. 2013. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen. Agriculture Water Manage, 130: 52–60. https://doi.org/10.1016/j.agwat.2013.08.010
  • Josipovic, M., Plavsic, H., Kovacevic, V., Markovic, M. ve Iljkic, D., 2014. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines. Genetika Journal, 46(1): 243-253.
  • Kandil, A.A., Attia, A.N., EL-Moursy, S.A ve AbdElnaby, M.M. 2016. Yielding and growth parameters of maize (Zea mays L.) as affected by different foliar and nitrogen soil fertilization. Advanced Journal of Agricultural Sciences, 4 (3):13-34.
  • Liu, C., Yao, Z., Wang, K. ve Zheng, X. 2015. Efects of increasing fertilization rates on nitric oxide emission and nitrogen use efciency in low carbon calcareous soil. Agriculture Ecosystem Environment, 203: 83–92.
  • Marković, M., Josipović, M., Šoštarić, J., Jambrović, A. ve Brkić, A. 2017. Response of maize (Zea mays L.) grain yield and yield components to irrigation and nitrogen fertilization. Journal of Central European Agriculture, 18 (1): 55-72.
  • Rashid, M.T., Voroney, P. ve Parkin, G. 2005. Predicting nitrogen fertilizer requirements for corn by chlorophyll meter under different N availability conditions. Canadian Journal of Soil Science, 85(1): 147-159. https://doi.org/10.4141/S04-005
  • Sapkota, A., Shrestha, R.K. ve Chalise, D. 2017. Response of maize to the soil application of nitrogen and phosphorous fertilizers. International Journal of Applied Sciences and Biotechnology, 5(4): 537-541.
  • Scott, J.T., Lambie, S.M., Stevenson, B.A., Schipperc, L.A., Parfittd, R.L. ve McGillb, A.C. 2015. Carbon and nitrogen leaching under high and low phosphate fertility pasture with increasing nitrogen inputs. Agriculture Ecosystems & Environment, 202(1): 139–147. https://doi.org/10.1016/j.agee.2014.12.021
  • Sharanabasappa, H.C., Basavanneppa, M.A. ve Koppalkar, B.G. 2017. Productivity of quality protein maize (Zea mays L.) and soil fertility as influenced by plant population and fertilizer levels under irrigated ecosystem. Int. J. Adv. Biol. Res., 7 (3): 504-508.
  • Sidi, M.E., El Hosary, A.A., Hammam, G.Y., El-Gedwy El Saeed, M. ve El-Hosary, A. A.A. 2019. Maize hybrids yield potential as affected by plant population density in Qalyubia, Egypt. Bioscience Research, 16(2):1565-1576.
  • Sindelar, A.J., Coulter, J.A., Lamb, J.A. ve Vetsch, J.A. 2015. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn. Agronomy Soil Environment Qual., 107: 843–850. https://doi.org/10.2134/agronj14.0535
  • Ten Berge, H.F., Hijbeek, R., Marloes, P., Van Loon, J.R., Tesfaye, K., Zingore, S., Craufurd, P., Van Heerwaarden, J., Brentrup, F., Schroder, J.J. ve Boogaard, H.L. 2019. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23:9–21.
  • Tsai, C.Y., Dweikat, I., Huber, D.M. ve Warren, H.L. 1992. Interrelationship of nitrogen nutrition with maize (Zea mays L.) grain yield, nitrogen use effiiency and grain quality. Journal Science Food Agriculture, 58: 1–8.
  • Worku, A., Derebe, B., Bitew, Y., Chakelie, G. ve Andualem, M. 2020. Response of maize (Zea mays L.) to nitrogen and planting density in Jabitahinan district, Western Amhara region. Cogent Food & Agriculture, 6(1): 1770405.
  • Zeleke, A., Alemayehu, G. ve Yihenew, G.S. 2018. Effects of planting density and nitrogen fertilizer rate on yield and yield related traits of maize (Zea mays L.) in Northwestern, Ethiopia. Advances in Crop Science and Technology, 6 (2): 1 -5.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Timuçin Taş 0000-0002-2144-9064

Project Number TAGEM/TA/09/07/03/005
Publication Date July 26, 2021
Submission Date April 4, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

APA Taş, T. (2021). GAP Bölgesi Koşullarında Atdişi Hibrit Mısır Çeşidine (Zea mays L.) Uygulanan Farklı Azot Gübresi Seviyelerinin Tane Verimi ve Kalite ile Klorofil İçeriklerine Etkisi. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(3), 655-665. https://doi.org/10.30910/turkjans.909545