Research Article
BibTex RIS Cite

The Olive Leaf Extract Induced Phenoloxidase Activity Changes in Galleria mellonella Hemolymph

Year 2021, Volume: 8 Issue: 4, 934 - 939, 24.10.2021
https://doi.org/10.30910/turkjans.897167

Abstract

Since the fruits and leaves of the Olive (Olea europea) tree, which grows naturally in Mediterranean countries, are thought to be beneficial for many diseases, it is widely used in folk medicine in these countries. Olive leaf extract has been used in the treatment of many diseases such as malaria, high fever, heart diseases and cancer. The greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) is frequently used in invertebrate immunity studies due to its similarity to the mammalian natural immune system. Melanization occurs when quinone precursors are converted to melanin and inactive profenoloxidase to phenoloxidase enzyme. In this study, the phenoloxidase activity of G. mellonella hemolymph larvae injected with olive leaf extract in different doses was determined by ELISA microplate reader at 492 nm absorbance. The findings obtained from this study showed that olive leaf extract increased phenoloxidase activity at a dose of 0.001 mg mL-1. Lower doses of 0.001 mg mL-1 did not cause changes in phenoloxidase activity compared to the untreated and Dimethyl Sulfoxide (DMSO) groups. The highest olive leaf extract dose of our study is 0.01 mg mL-1 and the larvae did not survive for 24 hours over those doses. The results of our study show that olive leaf supports humoral immune responses when used in low doses.

References

  • Andersen, S.O. 2010. Insect cuticular sclerotization: a review. Insect biochemistry and molecular biology, 40 (3): 166-178.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254.
  • Bronskill, J. 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J. Lep. Soc, 15 (2): 102-104.
  • Brookman, J. L., Ratcliffe, N. A. and Rowley, A. F. 1989. Studies on the activation of the prophenoloxidase system of insects by bacterial cell wall components. Insect Biochemistry, 19 (1): 47-57.
  • Cerenius, L. and Söderhäll, K. 2004. The prophenoloxidase‐activating system in invertebrates. Immunological reviews, 198 (1): 116-126.
  • Chain, B.M. and Anderson, R. S. 1982. Selective depletion of the plasmatocytes in Galleria mellonella following injection of bacteria. Journal of insect physiology, 28 (4): 377-384.
  • Desalermos, A., Fuchs, B.B. and Mylonakis, E. 2012. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS pathog, 8 (2): e1002451.
  • Dubovskiy, I.M., Whitten, M.M.A., Kryukov, V.Y., Yaroslavtseva, O.N., Grizanova, E. V., Greig, C. and Butt, T.M. 2013. More than a colour change: insect melanism, disease resistance and fecundity. Proceedings of the Royal Society B: Biological Sciences, 280 (1763): 20130584.
  • Dubovskiy, I.M., Kryukova, N.A., Glupov, V.V. and Ratcliffe, N.A. 2016. Encapsulation and nodulation in insects. Invertebrate Survival Journal, 13 (1): 229-246.
  • Furneri, P.M., Marino, A., Saija, A., Uccella, N. and Bisignano, G. 2002. In vitro antimycoplasmal activity of oleuropein. International journal of antimicrobial agents, 20 (4): 293-296.
  • Ghisalberti, E.L. 1998. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine, 5 (2): 147-163.
  • Gholamhosseini, A., Kheirandish, M.R., Shiry, N., Akhlaghi, M., Soltanian, S., Roshanpour, H. and Banaee, M. 2020. Use of a methanolic olive leaf extract (Olea europaea) against white spot virus syndrome in Penaeus vannamei: Comparing the biochemical, hematological and immunological changes. Aquaculture, 735556.
  • Ignasiak, K. and Maxwell, A. 2017. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC research notes, 10 (1): 1-8.
  • Kavanagh, K. and Reeves, E. P. 2004. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS microbiology reviews,28 (1): 101-112.
  • Kaya, S. 2020. The Effects of Pyrethrum Extract on Galleria mellonella Hemolymph Phenoloxıdase Enzyme. Journal of Scientific Perspectives, 4(4), 269-280.
  • Kaya, S. and Demir, N. 2020. Zeytin (Olea europaea) yaprağı ekstraktlarının model organizma Galleria mellonella hemosit ve hemosit aracılı bağışıklık tepkileri üzerine etkileri. Türk Tarım ve Doğa Bilimleri Dergisi, 7 (3): 646-653.
  • Khalatbary, A.R. and Ahmadvand, H. 2012. Neuroprotective effect of oleuropein following spinal cord injury in rats. Neurological research, 34 (1): 44-51.
  • Lee, O.H. and Lee, B.Y. 2010. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource technology, 101 (10): 3751-3754.
  • Li, X., Liu, Y., Jia, Q., LaMacchia, V., O’Donoghue, K. and Huang, Z. 2016. A systems biology approach to investigate the antimicrobial activity of oleuropein. Journal of industrial microbiology and biotechnology, 43 (12): 1705-1717.
  • Maruca, A., Catalano, R., Bagetta, D., Mesiti, F., Ambrosio, F.A., Romeo, I. and Costa, G. 2019. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. European journal of medicinal chemistry, 181: 111579.
  • Pech, L.L. and Strand, M. R. 2000. Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. Journal of Insect Physiology, 46 (12): 1565-1573.
  • Ratcliffe, N.A. 1985. Invertebrate immunity a primer for the non-specialist. Immunology letters, 10 (5): 253-270.
  • Rey, A. I., de-Cara, A., Calvo, L., Puig, P. and Hechavarría, T. 2020. Changes in Plasma Fatty Acids, Free Amino Acids, Antioxidant Defense, and Physiological Stress by Oleuropein Supplementation in Pigs Prior to Slaughter. Antioxidants, 9 (1): 56.
  • Saija, A., Tomaino, A., Pellegrino, M.L., Giuffrida, N., Trombetta, D. and Castelli, F. 2001. In vitro evaluation of the antioxidant activity and biomembrane interaction of the lazaroid U-74389G. Life Sciences, 68 (12): 1351-1366.
  • Sak, O., Uçkan, F. and Ergin, E. 2006. Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae).
  • Samara, P., Christoforidou, N., Lemus, C., Argyropoulou, A., Ioannou, K., Vougogiannopoulou, K. and Skaltsounis, A. L. 2017. New semi-synthetic analogs of oleuropein show improved anticancer activity in vitro and in vivo. European Journal of Medicinal Chemistry, 137: 11-29.
  • Smoot, L.M., Smoot, J.C., Graham, M.R., Somerville, G.A., Sturdevant, D.E., Migliaccio, C.A.L. and Musser, J. M. 2001. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proceedings of the National Academy of Sciences, 98 (18): 10416-10421.
  • Sudjana, A. N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N. and Hammer, K.A. 2009. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International journal of antimicrobial agents, 33 (5): 461-463.
  • Takahashi, S. and Enomoto, G. 1987. Scanning Electron Microscopic Study of the Initial Phase of Encapsulation in Samia cynthia ricini: (encapsulation/ haemocyte lysis/ plasma coagulation/ Samia silkmoth). Development, growth and differentiation, 29 (3): 249-256.
  • Visioli, F., Bellomo, G., Montedoro, G. and Galli, C. 1995. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis, 117 (1): 25-32.

Galleria Mellonella Hemolenfinde Zeytin Yaprağı Ekstraktı Kaynaklı Fenoloksidaz Aktivitesi Değişimleri

Year 2021, Volume: 8 Issue: 4, 934 - 939, 24.10.2021
https://doi.org/10.30910/turkjans.897167

Abstract

Akdeniz ülkelerinde doğal olarak yetişen Zeytin (Olea europea) ağacının meyve ve yapraklarının birçok hastalığa faydalı olduğu düşünüldüğünden bu ülkelerde halk hekimliğinde yaygın olarak kullanılmaktadır. Zeytin yaprağı ekstresi sıtma, yüksek ateş, kalp hastalıkları ve kanser gibi birçok hastalığın tedavisinde kullanılmıştır. Büyük balmumu güvesi Galleria mellonella (Lepidoptera: Pyralidae), memelilerinnin doğal bağışıklık sistemine benzerliği nedeniyle omurgasız bağışıklık araştırmalarında sıklıkla kullanılmaktadır. Melanizasyon, kinon öncüleri melanin ve inaktif profenoloksidaz fenoloksidaz enzimine dönüştürüldüğünde meydana gelir. Bu çalışmada, zeytin yaprağı ekstresi ile farklı dozlarda enjekte edilen G. mellonella larvalarının hemolenf fenoloksidaz aktivitesi 492 nm absorbansında ELISA mikroplaka okuyucu ile belirlenmiştir. Bu çalışmadan elde edilen bulgular, zeytin yaprağı ekstresinin 0,001 mg mL-1 dozunda fenoloksidaz aktivitesini artırdığını göstermiştir. Daha düşük 0.001 mg mL-1 dozları, işlem görmemiş ve Dimetil Sülfoksit (DMSO) gruplarına kıyasla fenoloksidaz aktivitesinde değişikliklere neden olmamıştır. Çalışmamızın en yüksek zeytin yaprağı ekstresi dozu 0.01 mg mL-1'dir ve bu doz üzerinde 24 saatlik gözlemlerde larvaların hayatta kalamadığı tespit edilmiştir. Çalışmamızın sonuçları, zeytin yaprağının düşük dozlarda kullanıldığında humoral bağışıklık tepkilerini desteklediğini göstermektedir.

References

  • Andersen, S.O. 2010. Insect cuticular sclerotization: a review. Insect biochemistry and molecular biology, 40 (3): 166-178.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254.
  • Bronskill, J. 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J. Lep. Soc, 15 (2): 102-104.
  • Brookman, J. L., Ratcliffe, N. A. and Rowley, A. F. 1989. Studies on the activation of the prophenoloxidase system of insects by bacterial cell wall components. Insect Biochemistry, 19 (1): 47-57.
  • Cerenius, L. and Söderhäll, K. 2004. The prophenoloxidase‐activating system in invertebrates. Immunological reviews, 198 (1): 116-126.
  • Chain, B.M. and Anderson, R. S. 1982. Selective depletion of the plasmatocytes in Galleria mellonella following injection of bacteria. Journal of insect physiology, 28 (4): 377-384.
  • Desalermos, A., Fuchs, B.B. and Mylonakis, E. 2012. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS pathog, 8 (2): e1002451.
  • Dubovskiy, I.M., Whitten, M.M.A., Kryukov, V.Y., Yaroslavtseva, O.N., Grizanova, E. V., Greig, C. and Butt, T.M. 2013. More than a colour change: insect melanism, disease resistance and fecundity. Proceedings of the Royal Society B: Biological Sciences, 280 (1763): 20130584.
  • Dubovskiy, I.M., Kryukova, N.A., Glupov, V.V. and Ratcliffe, N.A. 2016. Encapsulation and nodulation in insects. Invertebrate Survival Journal, 13 (1): 229-246.
  • Furneri, P.M., Marino, A., Saija, A., Uccella, N. and Bisignano, G. 2002. In vitro antimycoplasmal activity of oleuropein. International journal of antimicrobial agents, 20 (4): 293-296.
  • Ghisalberti, E.L. 1998. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine, 5 (2): 147-163.
  • Gholamhosseini, A., Kheirandish, M.R., Shiry, N., Akhlaghi, M., Soltanian, S., Roshanpour, H. and Banaee, M. 2020. Use of a methanolic olive leaf extract (Olea europaea) against white spot virus syndrome in Penaeus vannamei: Comparing the biochemical, hematological and immunological changes. Aquaculture, 735556.
  • Ignasiak, K. and Maxwell, A. 2017. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC research notes, 10 (1): 1-8.
  • Kavanagh, K. and Reeves, E. P. 2004. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS microbiology reviews,28 (1): 101-112.
  • Kaya, S. 2020. The Effects of Pyrethrum Extract on Galleria mellonella Hemolymph Phenoloxıdase Enzyme. Journal of Scientific Perspectives, 4(4), 269-280.
  • Kaya, S. and Demir, N. 2020. Zeytin (Olea europaea) yaprağı ekstraktlarının model organizma Galleria mellonella hemosit ve hemosit aracılı bağışıklık tepkileri üzerine etkileri. Türk Tarım ve Doğa Bilimleri Dergisi, 7 (3): 646-653.
  • Khalatbary, A.R. and Ahmadvand, H. 2012. Neuroprotective effect of oleuropein following spinal cord injury in rats. Neurological research, 34 (1): 44-51.
  • Lee, O.H. and Lee, B.Y. 2010. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource technology, 101 (10): 3751-3754.
  • Li, X., Liu, Y., Jia, Q., LaMacchia, V., O’Donoghue, K. and Huang, Z. 2016. A systems biology approach to investigate the antimicrobial activity of oleuropein. Journal of industrial microbiology and biotechnology, 43 (12): 1705-1717.
  • Maruca, A., Catalano, R., Bagetta, D., Mesiti, F., Ambrosio, F.A., Romeo, I. and Costa, G. 2019. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. European journal of medicinal chemistry, 181: 111579.
  • Pech, L.L. and Strand, M. R. 2000. Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. Journal of Insect Physiology, 46 (12): 1565-1573.
  • Ratcliffe, N.A. 1985. Invertebrate immunity a primer for the non-specialist. Immunology letters, 10 (5): 253-270.
  • Rey, A. I., de-Cara, A., Calvo, L., Puig, P. and Hechavarría, T. 2020. Changes in Plasma Fatty Acids, Free Amino Acids, Antioxidant Defense, and Physiological Stress by Oleuropein Supplementation in Pigs Prior to Slaughter. Antioxidants, 9 (1): 56.
  • Saija, A., Tomaino, A., Pellegrino, M.L., Giuffrida, N., Trombetta, D. and Castelli, F. 2001. In vitro evaluation of the antioxidant activity and biomembrane interaction of the lazaroid U-74389G. Life Sciences, 68 (12): 1351-1366.
  • Sak, O., Uçkan, F. and Ergin, E. 2006. Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae).
  • Samara, P., Christoforidou, N., Lemus, C., Argyropoulou, A., Ioannou, K., Vougogiannopoulou, K. and Skaltsounis, A. L. 2017. New semi-synthetic analogs of oleuropein show improved anticancer activity in vitro and in vivo. European Journal of Medicinal Chemistry, 137: 11-29.
  • Smoot, L.M., Smoot, J.C., Graham, M.R., Somerville, G.A., Sturdevant, D.E., Migliaccio, C.A.L. and Musser, J. M. 2001. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proceedings of the National Academy of Sciences, 98 (18): 10416-10421.
  • Sudjana, A. N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N. and Hammer, K.A. 2009. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International journal of antimicrobial agents, 33 (5): 461-463.
  • Takahashi, S. and Enomoto, G. 1987. Scanning Electron Microscopic Study of the Initial Phase of Encapsulation in Samia cynthia ricini: (encapsulation/ haemocyte lysis/ plasma coagulation/ Samia silkmoth). Development, growth and differentiation, 29 (3): 249-256.
  • Visioli, F., Bellomo, G., Montedoro, G. and Galli, C. 1995. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis, 117 (1): 25-32.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Serhat Kaya 0000-0002-0984-2824

Seranay Türkdoğan This is me 0000-0001-8827-6631

Publication Date October 24, 2021
Submission Date March 19, 2021
Published in Issue Year 2021 Volume: 8 Issue: 4

Cite

APA Kaya, S., & Türkdoğan, S. (2021). The Olive Leaf Extract Induced Phenoloxidase Activity Changes in Galleria mellonella Hemolymph. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(4), 934-939. https://doi.org/10.30910/turkjans.897167