Research Article
BibTex RIS Cite

Bazı İlaç ve Metallerin Keçi (Capra aegagrus hircus) Böbreğinde Aldoz Redüktaz ve Sorbitol Dehidrogenaz Enzimleri Üzerine Etkilerinin Araştırılması

Year 2022, Volume: 9 Issue: 3, 754 - 762, 23.07.2022
https://doi.org/10.30910/turkjans.1127098

Abstract

Bazı antibiyotik ve metallerin keçi (Capra aegagrus hircus) böbrek aldoz redüktaz (AR) ve sorbitol dehidrogenaz (SDH) aktiviteleri üzerine etkileri incelenmiştir. İnhibitör etki gösteren ilaç ve metaller için Ki sabitleri hesaplanmış ve Lineweaver-Burk eğrileri kullanılarak inhibisyon tipleri belirlenmiştir. Çalışmamızda AR enziminde en yüksek inhibisyon, 0.0274 mM IC50 değeri ile seftriakson antibiyotiği gösterdi. Seftriakson bileşiğinden daha güçlü AR inhibitörleri sentezlenebilir. Bu bileşiği IC50 değerleri sırasıyla 0.061 ve 0.25 mM olan amikasin sülfat ve siproflaksasin bileşikleri izlemektedir. Metallerin en yüksek inhibisyonu, 0.000445 mM IC50 değeri ile Co+2 iyonu göstermiştir. Bu metali sırasıyla 0.009 ve 1.43 mM IC50 değerleri ile FeSO4 ve MgCl2 takip etmektedir. SDH enziminde en yüksek inhibisyon, 0.016 mM IC50 değeri ile rifamisin sodyum antibiyotik gösterdi. Rifamisin sodyum bileşiğinden daha güçlü SDH inhibitörleri sentezlenebilir. Bu bileşiği sırasıyla 0.025 ve 0.16 mM IC50 değerlerine sahip seftriakson ve sefuroksim bileşikleri takip etmektedir. Metallerin en yüksek inhibisyonu 0.00044 mM IC50 değeri ile Co+2 iyonunu göstermiştir. Bu metali sırasıyla 0.009 ve 0.16 mM IC50 değerleri ile Fe+2 ve Zn+2 takip etmektedir.

References

  • Cornish-Bowden, A. (1974). A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication). Biochemical Journal, 137, 143–144. https://doi.org/10.1042/bj1370143
  • Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264, 375–382. https://doi.org/10.1126/science.8153624
  • Halder, N., Joshi, S., Gupta, S. (2003). Lens aldose reductase inhibiting potential of some indigenous plants. Journal of Ethnopharmacology, 86, 113–116. https://doi.org/10.1016/S0378-8741(03)00052-7
  • Jung, H.A., Yoon, N.Y., Kang, S.S., Kim, Y.S., Choi, J.S. (2010). Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. Journal of Pharmacy and Pharmacology, 60, 1227–1236. https://doi.org/10.1211/jpp.60.9.0016
  • Kato, A., Yasuko, H., Goto, H., Hollinshead, J., Nash, R.J., Adachi, I. (2009). Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine, 16, 258–261. https://doi.org/10.1016/j.phymed.2007.04.008
  • Lee, A.Y.W., Chung, S.S.M. (1999). Contributions of polyol pathway to oxidative stress in diabetic cataract. The FASEB Journal, 13, 23–30. https://doi.org/10.1096/fasebj.13.1.23
  • Liu, Y., Zhang, J.W., Li, W., Ma, H., Sun, J., Deng, M.C., Yang, L. (2006). Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to ınhibition of human cytochrome P450 enzymes. Toxicological Sciences, 91, 356–364. https://doi.org/10.1093/toxsci/kfj164
  • Manchanda, V., Sinha, S., Singh, N. (2010). Multidrug resistant Acinetobacter. Journal of Global Infectious Diseases, 2, 291. https://doi.org/10.4103/0974-777X.68538
  • Niculescu, L., Veiga-da-Cunha, M., Schaftingen, E. Van. (1997). Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochemical Journal, 321, 239–246. https://doi.org/10.1042/bj3210239
  • Obrosova, I.G., Pacher, P., Szabo, C., Zsengeller, Z., Hirooka, H., Stevens, M.J. Yorek, M.A. (2005). Aldose reductase ınhibition counteracts oxidative-nitrosative stress and poly(adp-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes, 54, 234–242. https://doi.org/10.2337/diabetes.54.1.234
  • Patel, D.K., Kumar, R., Kumar, M., Sairam, K., Hemalatha, S. (2012a). Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell. Asian Pacific Journal of Tropical Biomedicine, 2, 134–139. https://doi.org/10.1016/S2221-1691(11)60207-4
  • Patel, D.K., Kumar, R., Sairam, K., Hemalatha, S. (2012b). Pharmacologically tested aldose reductase inhibitors isolated from plant sources — A concise report. Chinese Journal of Natural Medicines, 10, 388–400. https://doi.org/10.1016/S1875-5364(12)60078-8
  • Poulsom, R., Mirrlees, D.J., Earl, D.C.N., Heath, H. (1983). The effects of an aldose reductase inhibitor upon the sorbitol pathway, fructose-1-phosphate and lactate in the retina and nerve of streptozotocin-diabetic rats. Experimental Eye Research, 36, 751–760. https://doi.org/10.1016/0014-4835(83)90112-4
  • Schmidt, R.E., Dorsey, D.A., Beaudet, L.N., Plurad, S.B., Williamson, J.R., Ido, Y. (1998). Effect of sorbitol dehydrogenase inhibition on experimental diabetic autonomic neuropathy. Journal of Neuropathology and Experimental Neurology, 57, 1175–1189. https://doi.org/10.1097/00005072-199812000-00010
  • Spratt, B. (1994). Resistance to antibiotics mediated by target alterations. Science, 264, 388–393. https://doi.org/10.1126/science.8153626
  • Tang, W.H., Kravtsov, G.M., Sauert, M., Tong, X.Y., Hou, X.Y., Wong, T.M., Man Chung, S.S. (2010). Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. Journal of Molecular and Cellular Cardiology, 49, 58–69. https://doi.org/10.1016/j.yjmcc.2009.12.003
  • Tilton, R.G., Chang, K., Nyengaard, J.R., Enden, M.V.d., Ido, Y., Williamson, J.R., (1995). Inhibition of sorbitol dehydrogenase: effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes, 44, 234–242. https://doi.org/10.2337/diab.44.2.234
  • Tomasz, A. (1997). Antibiotic resistance in Streptococcus pneumoniae. Clinical Infectious Diseases, 24, S85–S88. https://doi.org/10.1093/clinids/24.Supplement_1.S85
  • Yamaguchi, H., Kanayama, Y., Yamaki, S. (1994). Purification and properties of NAD-Dependent sorbitol dehydrogenase from apple fruit. Plant and Cell Physiology, 35, 887–892. https://doi.org/10.1093/oxfordjournals.pcp.a078673
  • Yamaki, S., Ishikawa, K. (1986). Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. Journal of the American Society for Horticultural Science, 111, 134–137.

Investigation of Some Drugs and Metals Effects on Aldose Reductase and Sorbitol Dehydrogenase Enzymes from Goat (Capra aegagrus hircus) Kidney

Year 2022, Volume: 9 Issue: 3, 754 - 762, 23.07.2022
https://doi.org/10.30910/turkjans.1127098

Abstract

The effects of some antibiotics and metals on goat (Capra aegagrus hircus) kidney aldose reductase (AR) and sorbitol dehydrogenase (SDH) activities were examined. For drugs and metals that exhibit inhibitory effect, Ki constants were calculated and inhibition types were determined by using Lineweaver-Burk curves. In our study, the highest inhibition showed ceftriaxone antibiotic in AR enzyme with an IC50 value of 0.0274 mM. More potent AR inhibitors can be synthesized from the ceftriaxone compound. This compound is followed by amikacin sulfate and ciproflaksasin compounds with IC50 values of 0.061 and 0.25 mM, respectively. The highest inhibition of metals showed Co+2 ion with IC50 value 0.000445 mM. This metal is followed by Fe+2 and Zn+2 with IC50 values of 0.0286 and 0.084 mM, respectively. In SDH enzyme, the highest inhibition showed rifamycin sodium antibiotic with an IC50 value of 0.016 mM. More potent SDH inhibitors can be synthesized from the rifamycin sodium compound. This compound is followed by ceftriaxone and cefuroxime compounds with IC50 values of 0.025 and 0.16 mM, respectively. The highest inhibition of metals showed Co+2 ion with IC50 value 0.00044 mM. This metal is followed by Fe+2 and Zn+2 with IC50 values of 0.009 and 0.16 mM, respectively.

References

  • Cornish-Bowden, A. (1974). A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication). Biochemical Journal, 137, 143–144. https://doi.org/10.1042/bj1370143
  • Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264, 375–382. https://doi.org/10.1126/science.8153624
  • Halder, N., Joshi, S., Gupta, S. (2003). Lens aldose reductase inhibiting potential of some indigenous plants. Journal of Ethnopharmacology, 86, 113–116. https://doi.org/10.1016/S0378-8741(03)00052-7
  • Jung, H.A., Yoon, N.Y., Kang, S.S., Kim, Y.S., Choi, J.S. (2010). Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. Journal of Pharmacy and Pharmacology, 60, 1227–1236. https://doi.org/10.1211/jpp.60.9.0016
  • Kato, A., Yasuko, H., Goto, H., Hollinshead, J., Nash, R.J., Adachi, I. (2009). Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine, 16, 258–261. https://doi.org/10.1016/j.phymed.2007.04.008
  • Lee, A.Y.W., Chung, S.S.M. (1999). Contributions of polyol pathway to oxidative stress in diabetic cataract. The FASEB Journal, 13, 23–30. https://doi.org/10.1096/fasebj.13.1.23
  • Liu, Y., Zhang, J.W., Li, W., Ma, H., Sun, J., Deng, M.C., Yang, L. (2006). Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to ınhibition of human cytochrome P450 enzymes. Toxicological Sciences, 91, 356–364. https://doi.org/10.1093/toxsci/kfj164
  • Manchanda, V., Sinha, S., Singh, N. (2010). Multidrug resistant Acinetobacter. Journal of Global Infectious Diseases, 2, 291. https://doi.org/10.4103/0974-777X.68538
  • Niculescu, L., Veiga-da-Cunha, M., Schaftingen, E. Van. (1997). Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochemical Journal, 321, 239–246. https://doi.org/10.1042/bj3210239
  • Obrosova, I.G., Pacher, P., Szabo, C., Zsengeller, Z., Hirooka, H., Stevens, M.J. Yorek, M.A. (2005). Aldose reductase ınhibition counteracts oxidative-nitrosative stress and poly(adp-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes, 54, 234–242. https://doi.org/10.2337/diabetes.54.1.234
  • Patel, D.K., Kumar, R., Kumar, M., Sairam, K., Hemalatha, S. (2012a). Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell. Asian Pacific Journal of Tropical Biomedicine, 2, 134–139. https://doi.org/10.1016/S2221-1691(11)60207-4
  • Patel, D.K., Kumar, R., Sairam, K., Hemalatha, S. (2012b). Pharmacologically tested aldose reductase inhibitors isolated from plant sources — A concise report. Chinese Journal of Natural Medicines, 10, 388–400. https://doi.org/10.1016/S1875-5364(12)60078-8
  • Poulsom, R., Mirrlees, D.J., Earl, D.C.N., Heath, H. (1983). The effects of an aldose reductase inhibitor upon the sorbitol pathway, fructose-1-phosphate and lactate in the retina and nerve of streptozotocin-diabetic rats. Experimental Eye Research, 36, 751–760. https://doi.org/10.1016/0014-4835(83)90112-4
  • Schmidt, R.E., Dorsey, D.A., Beaudet, L.N., Plurad, S.B., Williamson, J.R., Ido, Y. (1998). Effect of sorbitol dehydrogenase inhibition on experimental diabetic autonomic neuropathy. Journal of Neuropathology and Experimental Neurology, 57, 1175–1189. https://doi.org/10.1097/00005072-199812000-00010
  • Spratt, B. (1994). Resistance to antibiotics mediated by target alterations. Science, 264, 388–393. https://doi.org/10.1126/science.8153626
  • Tang, W.H., Kravtsov, G.M., Sauert, M., Tong, X.Y., Hou, X.Y., Wong, T.M., Man Chung, S.S. (2010). Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. Journal of Molecular and Cellular Cardiology, 49, 58–69. https://doi.org/10.1016/j.yjmcc.2009.12.003
  • Tilton, R.G., Chang, K., Nyengaard, J.R., Enden, M.V.d., Ido, Y., Williamson, J.R., (1995). Inhibition of sorbitol dehydrogenase: effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes, 44, 234–242. https://doi.org/10.2337/diab.44.2.234
  • Tomasz, A. (1997). Antibiotic resistance in Streptococcus pneumoniae. Clinical Infectious Diseases, 24, S85–S88. https://doi.org/10.1093/clinids/24.Supplement_1.S85
  • Yamaguchi, H., Kanayama, Y., Yamaki, S. (1994). Purification and properties of NAD-Dependent sorbitol dehydrogenase from apple fruit. Plant and Cell Physiology, 35, 887–892. https://doi.org/10.1093/oxfordjournals.pcp.a078673
  • Yamaki, S., Ishikawa, K. (1986). Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. Journal of the American Society for Horticultural Science, 111, 134–137.
There are 20 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Mahinur Kırıcı 0000-0003-4642-7387

Şükrü Beydemir 0000-0003-3667-6902

Publication Date July 23, 2022
Submission Date June 6, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

APA Kırıcı, M., & Beydemir, Ş. (2022). Investigation of Some Drugs and Metals Effects on Aldose Reductase and Sorbitol Dehydrogenase Enzymes from Goat (Capra aegagrus hircus) Kidney. Türk Tarım Ve Doğa Bilimleri Dergisi, 9(3), 754-762. https://doi.org/10.30910/turkjans.1127098