Research Article
BibTex RIS Cite

Sulfoxaflor’a Maruz Kalan Zebra Balığı Embriyo ve Larvalarında Gelişimsel Süreçler ve Davranış Üzerine Etkiler

Year 2023, Volume: 10 Issue: 1, 88 - 96, 28.01.2023
https://doi.org/10.30910/turkjans.1217331

Abstract

Sulfoxaflor (SFX), zararlıları kontrol etmek için yaygın olarak kullanılan bir neonikotinoid insektisittir ve hedef olmayan organizmalar için risk oluşturmaktadır. Hedef olmayan canlılar üzerine toksik etkilere sahip olduğu bilinen bu insektisitin sucul canlılardaki etkileri tam olarak bilinmemektedir. Bu çalışmada sulfoxaflor insektisitinin zebra balığı embriyo ve larvalarında gelişimsel toksisitesi ve davranış üzerine etkileri araştırıldı. Zebra balığı embriyo-larvalarına 96 saat boyunca farklı dozlarda (1, 10 ve 50 ppm) sulfoxaflor maruz bırakılmış ve hayatta kalma oranı, koryondan çıkış oranı ve morfolojik değişiklikler gibi gelişimsel toksisite göstergesi olan parametreler incelendi. Ayrıca zebra balığı larvalarında 96.saatte davranış üzerine sulfoxaflorun etkileri locomotor akitive (toplam mesafe ve hız) ile belirlendi. Sonuçlar, SFX maruziyetinin embriyo koryondan çıkışında gecikmeye ve özellikle 50 ppm uygulama grubunda embriyo-larvalarda ölümlerinde önemli bir artışa yol açtığı belirlendi. SFX doza bağlı olarak farklı malformasyonlara (pericardial ödem, besin kesesi ödemi, omurga ve kuyruk deformasyonu, küçük göz oluşumu) neden olduğu gözlemlendi. SFX maruziyeti 96.saatte davranış testinde 50 ppm uygulama grubunda toplam mesafe ve hızın önemli oranda artarak larvalarda hiperaktiviteye sebep olduğu görüldü. Bu çalışma, sulfoxaflorun suda yaşayan organizmalar üzerindeki potansiyel toksik etkilerini değerlendirmek için veri sağlayacaktır.

Thanks

Bu çalışmamızda zebra balığı embriyo ve larvaları ile deney yapma imkanı sağlayan Atatürk Üniversitesi Su Ürünleri Fakültesi Sucul Biyoteknoloji Laboratuvarı'na teşekkür ederiz.

References

  • Bootorabi, F., Manouchehri, H., Changizi, R., Barker, H., Palazzo, E., Saltari, A., Parikka M., Pincelli, C. ve Aspatwar, A. 2017. Zebrafish as a model organism for the development of drugs for skin cancer. International Journal of Molecular Sciences, 18(7), 1550.
  • Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D. ve Mittelstet, A. R. 2020. Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water, 12(12), 3388.
  • Cheng, S., Dai, P., Li, R., Chen, Z., Liang, P., Xie, X., Zhen, C. ve Gao, X. 2023. The sulfoximine insecticide sulfoxaflor exposure reduces the survival status and disrupts the intestinal metabolism of the honeybee Apis mellifera. Journal of Hazardous Materials, 442, 130109.
  • Christen, V., Mittner, F. ve Fent, K. 2016. Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environmental Science & Technology, 50(7), 4071-4081.
  • da Silva Brito, R., Pereira, A. C., Farias, D. ve Rocha, T. L. 2022. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. Science of The Total Environment, 157665.
  • Damasceno, J. M., Rato, L. D., Simões, T., Morão, I. F., Meireles, G., Novais, S. C. ve Lemos, M. F. 2021. Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda). Biology, 10(12), 1234.
  • Deng, Y., Wang, R., Song, B., Yang, Y., Hu, D., Xiao, X., Chen, X. ve Lu, P. 2022. Enantioselective bioaccumulation and toxicity of rac-sulfoxaflor in zebrafish (Danio rerio). Science of The Total Environment, 817, 153007.
  • Dhasmana, D., Veerapathiran, S., Azbazdar, Y., Nelanuthala, A. V. S., Teh, C., Ozhan, G. ve Wohland, T. 2021. Wnt3 is lipidated at conserved cysteine and serine residues in zebrafish neural tissue. Frontiers in Cell and Developmental Biology, 9, 1296.
  • Duchet, C., Mitchell, C. J., McIntyre, J. K. ve Stark, J. D. 2022. Chronic toxicity of three formulations of neonicotinoid insecticides and their mixture on two daphniid species: Daphnia magna and Ceriodaphnia dubia. Aquatic Toxicology, 106351.
  • Ellis-Hutchings, R. G., Rasoulpour, R. J., Terry, C., Carney, E. W. ve Billington, R. 2014. Human relevance framework evaluation of a novel rat developmental toxicity mode of action induced by sulfoxaflor. Critical Reviews in Toxicology, 44(sup2), 45-62.
  • Gauthier, J. R. ve Mabury, S. A. 2021. The Sulfoximine Insecticide Sulfoxaflor and Its Photodegradate Demonstrate Acute Toxicity to the Nontarget Invertebrate Species Daphnia magna. Environmental Toxicology and Chemistry, 40(8), 2156-2164.
  • Hladik, M. L., Kolpin, D. W. ve Kuivila, K. M. 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental Pollution, 193, 189-196.
  • Hoffman, M. M. 2020. Assessing the sublethal impacts of sulfoxaflor on the physiology and behavior of Daphnia magna. Bachelor of Science, University of Mary Washington
  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., ...ve Teucke, M. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498-503.
  • Jeschke, P., Nauen, R., Schindler, M. ve Elbert, A. 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7), 2897-2908.
  • Joseph, T. P., Zhou, F., Sai, L. Y., Chen, H., Lin, S. L. ve Schachner, M. 2022. Duloxetine ameliorates valproic acid‐induced hyperactivity, anxiety‐like behavior, and social interaction deficits in zebrafish. Autism Research, 15(1), 27-41.
  • Kiziltan, T., Baran, A., Kankaynar, M., Şenol, O., Sulukan, E., Yildirim, S. ve Ceyhun, S. B. 2022. Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Archives of Toxicology, 96(4), 1089-1099.
  • Köktürk, M. 2022. In vivo toxicity assessment of Remazol Gelb–GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. Science of The Total Environment, 852, 158473.
  • Köktürk, M., Yildirim, S., Yiğit, A., Ozhan, G., Bolat, İ., Alma, M. H., Menges, N., Alak, G. ve Atamanalp, M. 2022. What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP)?: In vivo study on Zebrafish embryo/larvae. Journal of Environmental Chemical Engineering, 10(5), 108443.
  • Kuder, R. S. ve Gundala, H. P. 2018. Developmental toxicity of deltamethrin and 3-phenoxybenzoic acid in embryo–larval stages of zebrafish (Danio rerio). Toxicology Mechanisms and Methods, 28(6), 415-422.
  • Lai, K. P., Gong, Z. ve Tse, W. K. F. 2021. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquatic Toxicology, 234, 105813.
  • Lee, H., Ko, E., Shin, S., Choi, M. ve Kim, K. T. 2021. Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos. Environmental Pollution, 277, 115904.
  • Liu, P., Wu, F., Li, H., & You, J. (2021). The neonicotinoid alternative sulfoxaflor causes chronic toxicity and impairs mitochondrial energy production in Chironomus kiinensis. Aquatic Toxicology, 235, 105822.
  • Pamanji, R., Yashwanth, B. ve Rao, J. V. 2016. Profenofos induced biochemical alterations and in silico modelling of hatching enzyme, ZHE1 in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 45, 123-131.
  • Pan, F., Lu, Y. ve Wang, L. 2017. Toxicity and sublethal effects of sulfoxaflor on the red imported fire ant, Solenopsis invicta. Ecotoxicology and Environmental Safety, 139, 377-383.
  • Park, J., Kim, C., Jeon, H. J., Kim, K., Kim, M. J., Moon, J. K. ve Lee, S. E. 2021. Developmental toxicity of 3-phenoxybenzoic acid (3-PBA) and endosulfan sulfate derived from insecticidal active ingredients: Abnormal heart formation by 3-PBA in zebrafish embryos. Ecotoxicology and Environmental Safety, 224, 112689.
  • Piner Benli, P. ve Çelik, M. 2021a. Glutathione and its dependent enzymes’ modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo. Science Progress, 104(2), 00368504211028361.
  • Piner Benli, P. ve Çelik, M. 2021b. In vivo effects of neonicotinoid-sulfoximine insecticide sulfoxaflor on acetylcholinesterase activity in the tissues of zebrafish (Danio rerio). Toxics, 9(4), 73.
  • Piner Benli, P., Kaya, M. ve Dağlıoğlu, Y. K. 2021c. Fucoidan Protects against Acute Sulfoxaflor-Induced Hematological/Biochemical Alterations and Oxidative Stress in Male Mice. Pharmaceuticals, 15(1), 16.
  • Rahman, M. S., Islam, S. M., Haque, A. ve Shahjahan, M. 2020. Toxicity of the organophosphate insecticide sumithion to embryo and larvae of zebrafish. Toxicology reports, 7, 317-323.
  • Sevgiler, Y. ve Atli, G. 2022. Sulfoxaflor, Zn2+ and their combinations disrupt the antioxidant and osmoregulatory (Ca2+-ATPase) system in Daphnia magna. Journal of Trace Elements in Medicine and Biology, 73, 127035.
  • Sulukan, E., Baran, A., Kankaynar, M., Kızıltan, T., Bolat, İ., Yıldırım, S., Akgül Ceyhun, H. ve Ceyhun, S. B. 2023. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. Science of The Total Environment, 856, 158903.
  • Tingjun, F. ve Zhenping, S. 2002. Advances and prospect in fish hatching enzyme research. Transactions of Oceanology and Limnology, 1, 48-56.
  • Victoria, S., Hein, M., Harrahy, E., ve King-Heiden, T. C. 2022. Potency matters: Impacts of embryonic exposure to nAChR agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. Journal of Toxicology and Environmental Health, Part A, 1-16.
  • Wang, S., Han, X., Yu, T., Liu, Y., Zhang, H., Mao, H., Hu, C. ve Xu, X. 2022. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. Ecotoxicology and Environmental Safety, 242, 113870.
  • Westerfield, M. 2007. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio), fifth ed. University of Oregon Press, Eugene, OR. Chapters 1-4.
  • Zhang, J. G., Ma, D. D., Xiong, Q., Qiu, S. Q., Huang, G. Y., Shi, W. J. ve Ying, G. G. 2021. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicology and Environmental Safety, 227, 112917.
  • Zhang, X., Wang, X., Liu, Y., Fang, K. ve Liu, T. 2020. The toxic effects of sulfoxaflor induced in earthworms (Eisenia fetida) under effective concentrations. International Journal of Environmental Research and Public Health, 17(5), 1740.
  • Zhu, Y., Loso, M. R., Watson, G. B., Sparks, T. C., Rogers, R. B., Huang, J. X., Gerwick, B.C., Babcock, J. M., Kelley, D., Hegde, V. B., Nugent, B. M., Renga, J. M., Denholm, L., Gorman, K., DeBoer, G. J., Hasler, J., Meade, T. ve Thomas, J. D. 2011. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. Journal of Agricultural and Food Chemistry, 59(7), 2950-2957.

Effects of Exposure to the Neonicotinoid Insecticide Sulfoxaflor on Developmental Processes and Behavior in Zebrafish Embryo-Larvae

Year 2023, Volume: 10 Issue: 1, 88 - 96, 28.01.2023
https://doi.org/10.30910/turkjans.1217331

Abstract

Sulfoxaflor (SFX) is a neonicotinoid insecticide widely used to control pests and poses a risk to non-target organisms. The effects of this insecticide, which is known to have toxic effects on non-target organisms, on aquatic organisms, are not fully known. In this study, the developmental toxicity and behavioral effects of sulfoxaflor insecticide in zebrafish embryos and larvae were investigated. Zebrafish embryo-larvae were exposed to different doses of sulfoxaflor (1, 10, and 50 ppm) for 96 hours, and parameters indicative of developmental toxicity such as survival rate, chorion exit rate, and morphological changes were examined. In addition, the effects of sulfoxaflor on the behavior of zebrafish larvae at the 96th hour were determined by locomotor activity (total distance and speed). Results showed that SFX exposure caused a delay in embryo chorion exit and a significant increase in embryo larvae mortality, especially in the 50 ppm administration group. It was observed that SFX caused different malformations (pericardial edema, yolk sac edema, and spine and tail deformation, small eye formation) depending on the dose. In the behavioral test at 96th hour of SFX exposure, it was observed that the total distance and speed increased significantly in the 50 ppm application group, causing hyperactivity in the larvae. This study will provide data to evaluate the potential toxic effects of sulfoxaflor on aquatic organisms.

References

  • Bootorabi, F., Manouchehri, H., Changizi, R., Barker, H., Palazzo, E., Saltari, A., Parikka M., Pincelli, C. ve Aspatwar, A. 2017. Zebrafish as a model organism for the development of drugs for skin cancer. International Journal of Molecular Sciences, 18(7), 1550.
  • Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D. ve Mittelstet, A. R. 2020. Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water, 12(12), 3388.
  • Cheng, S., Dai, P., Li, R., Chen, Z., Liang, P., Xie, X., Zhen, C. ve Gao, X. 2023. The sulfoximine insecticide sulfoxaflor exposure reduces the survival status and disrupts the intestinal metabolism of the honeybee Apis mellifera. Journal of Hazardous Materials, 442, 130109.
  • Christen, V., Mittner, F. ve Fent, K. 2016. Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environmental Science & Technology, 50(7), 4071-4081.
  • da Silva Brito, R., Pereira, A. C., Farias, D. ve Rocha, T. L. 2022. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. Science of The Total Environment, 157665.
  • Damasceno, J. M., Rato, L. D., Simões, T., Morão, I. F., Meireles, G., Novais, S. C. ve Lemos, M. F. 2021. Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda). Biology, 10(12), 1234.
  • Deng, Y., Wang, R., Song, B., Yang, Y., Hu, D., Xiao, X., Chen, X. ve Lu, P. 2022. Enantioselective bioaccumulation and toxicity of rac-sulfoxaflor in zebrafish (Danio rerio). Science of The Total Environment, 817, 153007.
  • Dhasmana, D., Veerapathiran, S., Azbazdar, Y., Nelanuthala, A. V. S., Teh, C., Ozhan, G. ve Wohland, T. 2021. Wnt3 is lipidated at conserved cysteine and serine residues in zebrafish neural tissue. Frontiers in Cell and Developmental Biology, 9, 1296.
  • Duchet, C., Mitchell, C. J., McIntyre, J. K. ve Stark, J. D. 2022. Chronic toxicity of three formulations of neonicotinoid insecticides and their mixture on two daphniid species: Daphnia magna and Ceriodaphnia dubia. Aquatic Toxicology, 106351.
  • Ellis-Hutchings, R. G., Rasoulpour, R. J., Terry, C., Carney, E. W. ve Billington, R. 2014. Human relevance framework evaluation of a novel rat developmental toxicity mode of action induced by sulfoxaflor. Critical Reviews in Toxicology, 44(sup2), 45-62.
  • Gauthier, J. R. ve Mabury, S. A. 2021. The Sulfoximine Insecticide Sulfoxaflor and Its Photodegradate Demonstrate Acute Toxicity to the Nontarget Invertebrate Species Daphnia magna. Environmental Toxicology and Chemistry, 40(8), 2156-2164.
  • Hladik, M. L., Kolpin, D. W. ve Kuivila, K. M. 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental Pollution, 193, 189-196.
  • Hoffman, M. M. 2020. Assessing the sublethal impacts of sulfoxaflor on the physiology and behavior of Daphnia magna. Bachelor of Science, University of Mary Washington
  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., ...ve Teucke, M. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498-503.
  • Jeschke, P., Nauen, R., Schindler, M. ve Elbert, A. 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7), 2897-2908.
  • Joseph, T. P., Zhou, F., Sai, L. Y., Chen, H., Lin, S. L. ve Schachner, M. 2022. Duloxetine ameliorates valproic acid‐induced hyperactivity, anxiety‐like behavior, and social interaction deficits in zebrafish. Autism Research, 15(1), 27-41.
  • Kiziltan, T., Baran, A., Kankaynar, M., Şenol, O., Sulukan, E., Yildirim, S. ve Ceyhun, S. B. 2022. Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Archives of Toxicology, 96(4), 1089-1099.
  • Köktürk, M. 2022. In vivo toxicity assessment of Remazol Gelb–GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. Science of The Total Environment, 852, 158473.
  • Köktürk, M., Yildirim, S., Yiğit, A., Ozhan, G., Bolat, İ., Alma, M. H., Menges, N., Alak, G. ve Atamanalp, M. 2022. What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP)?: In vivo study on Zebrafish embryo/larvae. Journal of Environmental Chemical Engineering, 10(5), 108443.
  • Kuder, R. S. ve Gundala, H. P. 2018. Developmental toxicity of deltamethrin and 3-phenoxybenzoic acid in embryo–larval stages of zebrafish (Danio rerio). Toxicology Mechanisms and Methods, 28(6), 415-422.
  • Lai, K. P., Gong, Z. ve Tse, W. K. F. 2021. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquatic Toxicology, 234, 105813.
  • Lee, H., Ko, E., Shin, S., Choi, M. ve Kim, K. T. 2021. Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos. Environmental Pollution, 277, 115904.
  • Liu, P., Wu, F., Li, H., & You, J. (2021). The neonicotinoid alternative sulfoxaflor causes chronic toxicity and impairs mitochondrial energy production in Chironomus kiinensis. Aquatic Toxicology, 235, 105822.
  • Pamanji, R., Yashwanth, B. ve Rao, J. V. 2016. Profenofos induced biochemical alterations and in silico modelling of hatching enzyme, ZHE1 in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 45, 123-131.
  • Pan, F., Lu, Y. ve Wang, L. 2017. Toxicity and sublethal effects of sulfoxaflor on the red imported fire ant, Solenopsis invicta. Ecotoxicology and Environmental Safety, 139, 377-383.
  • Park, J., Kim, C., Jeon, H. J., Kim, K., Kim, M. J., Moon, J. K. ve Lee, S. E. 2021. Developmental toxicity of 3-phenoxybenzoic acid (3-PBA) and endosulfan sulfate derived from insecticidal active ingredients: Abnormal heart formation by 3-PBA in zebrafish embryos. Ecotoxicology and Environmental Safety, 224, 112689.
  • Piner Benli, P. ve Çelik, M. 2021a. Glutathione and its dependent enzymes’ modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo. Science Progress, 104(2), 00368504211028361.
  • Piner Benli, P. ve Çelik, M. 2021b. In vivo effects of neonicotinoid-sulfoximine insecticide sulfoxaflor on acetylcholinesterase activity in the tissues of zebrafish (Danio rerio). Toxics, 9(4), 73.
  • Piner Benli, P., Kaya, M. ve Dağlıoğlu, Y. K. 2021c. Fucoidan Protects against Acute Sulfoxaflor-Induced Hematological/Biochemical Alterations and Oxidative Stress in Male Mice. Pharmaceuticals, 15(1), 16.
  • Rahman, M. S., Islam, S. M., Haque, A. ve Shahjahan, M. 2020. Toxicity of the organophosphate insecticide sumithion to embryo and larvae of zebrafish. Toxicology reports, 7, 317-323.
  • Sevgiler, Y. ve Atli, G. 2022. Sulfoxaflor, Zn2+ and their combinations disrupt the antioxidant and osmoregulatory (Ca2+-ATPase) system in Daphnia magna. Journal of Trace Elements in Medicine and Biology, 73, 127035.
  • Sulukan, E., Baran, A., Kankaynar, M., Kızıltan, T., Bolat, İ., Yıldırım, S., Akgül Ceyhun, H. ve Ceyhun, S. B. 2023. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. Science of The Total Environment, 856, 158903.
  • Tingjun, F. ve Zhenping, S. 2002. Advances and prospect in fish hatching enzyme research. Transactions of Oceanology and Limnology, 1, 48-56.
  • Victoria, S., Hein, M., Harrahy, E., ve King-Heiden, T. C. 2022. Potency matters: Impacts of embryonic exposure to nAChR agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. Journal of Toxicology and Environmental Health, Part A, 1-16.
  • Wang, S., Han, X., Yu, T., Liu, Y., Zhang, H., Mao, H., Hu, C. ve Xu, X. 2022. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. Ecotoxicology and Environmental Safety, 242, 113870.
  • Westerfield, M. 2007. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio), fifth ed. University of Oregon Press, Eugene, OR. Chapters 1-4.
  • Zhang, J. G., Ma, D. D., Xiong, Q., Qiu, S. Q., Huang, G. Y., Shi, W. J. ve Ying, G. G. 2021. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicology and Environmental Safety, 227, 112917.
  • Zhang, X., Wang, X., Liu, Y., Fang, K. ve Liu, T. 2020. The toxic effects of sulfoxaflor induced in earthworms (Eisenia fetida) under effective concentrations. International Journal of Environmental Research and Public Health, 17(5), 1740.
  • Zhu, Y., Loso, M. R., Watson, G. B., Sparks, T. C., Rogers, R. B., Huang, J. X., Gerwick, B.C., Babcock, J. M., Kelley, D., Hegde, V. B., Nugent, B. M., Renga, J. M., Denholm, L., Gorman, K., DeBoer, G. J., Hasler, J., Meade, T. ve Thomas, J. D. 2011. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. Journal of Agricultural and Food Chemistry, 59(7), 2950-2957.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Mine Köktürk 0000-0003-4722-256X

Ekrem Sulukan 0000-0002-4414-9873

Publication Date January 28, 2023
Submission Date December 11, 2022
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Köktürk, M., & Sulukan, E. (2023). Sulfoxaflor’a Maruz Kalan Zebra Balığı Embriyo ve Larvalarında Gelişimsel Süreçler ve Davranış Üzerine Etkiler. Turkish Journal of Agricultural and Natural Sciences, 10(1), 88-96. https://doi.org/10.30910/turkjans.1217331