Research Article
BibTex RIS Cite

Determination of Factors Associated with Agricultural Productivity: The Case of BRICS-T Countries

Year 2024, Volume: 11 Issue: 2, 524 - 535, 30.04.2024
https://doi.org/10.30910/turkjans.1401633

Abstract

Thanks to its economic and social impacts, agriculture is one of the pillars of a country's economy. The agricultural sector supplies raw materials to many sectors and enables the creation of more value-added products. In addition, the agricultural sector maintains its importance by continuing to feed the cities in terms of food and various raw materials despite the loss of population in rural areas where agricultural activities are carried out over time, increasing the productivity of countries in agricultural areas and its place in foreign trade. Agriculture 4.0 (smart agriculture), on the other hand, offers economic contributions in terms of minimizing labor power and production input costs, producing high quality and quantity products and increasing the income from farms in return for this production. The aim of this study is to investigate the factors associated with agricultural productivity in the context of smart agriculture (Agriculture 4.0) in BRICS-T countries. Panel data analysis method was used in the study. The unique value of this study lies in the econometric analysis of the factors associated with agricultural productivity within the scope of Agriculture 4.0 for the relevant year range and country group.According to the results of Dumitrescu-Hurlin Panel Causality Test, a unidirectional causality relationship was found between agricultural productivity index (API) and urbanization rate (URR), and a bidirectional causality relationship between human capital index (HCI) and API. Consequently, agricultural development and urbanisation policies should also focus on human capital development. This may be beneficial for countries in increasing agricultural productivity and overall welfare.

References

  • Ahmed, Z., Zafar, M.W., & Ali, S. (2020). Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustainable Cities and Society, 55, 102064.
  • Alper, A., & Oransay, G. (2015). Cari açık ve finansal gelişmişlik ilişkisinin panel nedensellik analizi ekseninde değerlendirilmesi. Uluslararası Ekonomi ve Yenilik Dergisi, 1(2), 73-85. https://doi.org/10.20979/ueyd.182896
  • Alene, A. D. (2010). Productivity growth and the effects of R&D in African Agriculture. Agricultural Economics, 41(3‐4), 223-2384. https://doi.org/10.1111/j.1574-0862.2010.00450.x
  • Aydemir, S. (2023). Akıllı tarım makineleri Çin’de işgücü tasarrufu sağlıyor. https://haber-alanya.com.tr/akilli-tarim-makineleri-cinde-isgucu-tasarrufu-sagliyor/ (Erişim Tarihi: 13.11.2023)
  • Aydınbaş, G. (2023a). A Study on smart agriculture (agriculture 4.0) from an economic perspective. BILTURK, The Journal of Economics and Related Studies, 5(2), 63-86. doi: 10.47103/bilturk.1218500
  • Aydınbaş, G. (2023b). Politik istikrar ve kişisel gelir arasındaki nedensellik ilişkisi: Brics ve Mist ülkeleri örneği. Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 26, 438-452. https://doi.org/10.29029/busbed.1295438
  • Bekele, W. F. (2020). Determinants of agricultural technology adoption in Ethiopia: A meta-analysis. Cogent Food & Agriculture, 6(1), 1855817. doi: 10.1080/23311932.2020.1855817
  • Boakye, A. Estimating agriculture technologies’ impact on maize yield in rural South Africa. SN Business & Economics, 3, 149 (2023). https://doi.org/10.1007/s43546-023-00530-4
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics, The Review of Economic Studies, 47(1), Pages 239-253, https://doi.org/10.2307/2297111
  • Bulut, R. (2021). Dünya ve Türkiye tarımında makineleşme. Göller Bölgesi Aylık Ekonomi ve Kültür Dergisi Ayrıntı, 9(105), Aralık 2021. https://www.dergiayrinti.com/index.php/ayr/article/view/1607 (Erişim Tarihi: 13.11.2023)
  • Chandio, A. A., Jiang, Y., Rehman, A. and Rauf, A. (2020). Short and Long-Run Impacts of Climate Change on Agriculture: An Empirical Evidence from China. International Journal of Climate Change Strategies and Management, 12: 201-221.
  • DEİK, 2013. Güney Afrika ülke bülteni. www.deik.org.tr › uploads › guney-afrika-ulke-bulteni-2013 (Erişim Tarihi: 13.11.2023)
  • Dumitrescu, E. I., & Hurlin, C. (2012). Testing for granger noncausality in heterogeneous panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014 Dünya Bankası, 2021, https://www.worldbank.org/tr/country/turkey
  • Ercan, Ş., Öztep, R., Güler, D., & Saner, G. (2019). Tarım 4.0 ve Türkiye'de uygulanabilirliğinin değerlendirilmesi. Tarım Ekonomisi Dergisi, 25(2),259-265.
  • Erdinç, Z., & Aydınbaş, G. (2021). Panel Data Analysis of Value-Added Agriculture Determinants. Anadolu University Journal of Social Sciences, 21(1): 213-232.
  • Fedotova, G. V., Larionova, I. S., Maramygin, M. S., Sigidov, Yu I., & Bolaev, B. K., Kulikova, N. N. (2020). Agriculture 4.0. as a New Vector Towards Increasing the Food Security in Russia. IOP Conference Series: Earth and Environmental Science, 677, IV International Scientific Conference: AGRITECH-IV-2020: Agribusiness, Environmental Engineering and Biotechnologies (18-20, November, Krasnoyarsk, Russian Federation) doi: 10.1088/1755-1315/677/3/032016
  • Güneş, M., 2023. Güney Afrika ve Türkiye’nin tarım yönünden karşılaştırılması. https://www.afrikacalismalarimerkezi.com/guney-afrika-ve-turkiyenin-tarim-yonunden-karsilastirilmasi/ (Erişim Tarihi: 13.11.2023)
  • IBEF, 2023. Agriculture 4.0: Future of Indian Agriculture. https://www.ibef.org/agriculture-4-0-future-of-indian-agriculture (Erişim Tarihi: 13.11.2023) Invest in Turkey. 2021. Turkish agri-food industry outlook. https://www.invest.gov.tr/tr/sectors/sayfalar/agrofood.aspx (Erişim Tarihi: 13.11.2023)
  • İTTM, 2019. Türk tarımının global entegrasyonu ve Tarım 4.0. https://itb.org.tr/dosya/akillitarimrapor/proje-sonuc-raporu.pdf?1553592263 (Erişim Tarihi: 13.11.2023)
  • Jiang, Q., Jizhi, L., Hongyun, S. and Yangyue, S. (2022). The Impact of The Digital Economy on Agricultural Green Development: Evidence from China. Agriculture, 12(8), 1107. https://doi.org/10.3390/agriculture12081107 Kaya, M. (2019). Smart farming (Agriculture 4.0) Proposal for the Development of Ağrı. Akademik Bakış Dergisi, (75), 130-156.
  • Koç, A. A., Bayaner, A., Uysal, P., & Subaşı, S. 2016. Factor Demand and Total Factor Productivity in Turkish Agriculture. VII. Tarım Ekonomisi Kongresi (25-27 Mayıs, Isparta), 859-869 ss.
  • Kurt, C. A., 2023. Hindistan Blockchain’i tarım verimini desteklemek için kullanacak. https://tr.cointelegraph.com/news/blockchain-to-support-agricultural-exports-to-be-used
  • Mendes, V., & Viola, E. (2023). Green digitalization? Agriculture 4.0 and the Challenges of Environmental Governance in Brazil. In: Søndergaard, N., de Sá, C. D., Barros-Platiau, A. F. (eds) “Sustainability Challenges of Brazilian Agriculture”. Environment & Policy, 64, Springer, Cham. https://doi.org/10.1007/978-3-031-29853-0_11
  • Nadezhda V. O., & Dmitry V. N. (2022). Russian Agricultural Innovations Prospects in the Context of Global Challenges: Agriculture 4.0. Russian Journal of Economics, ARPHA Platform, 8(1), 29-48.
  • Oğul, B. (2022). Tarımsal Destekler ve Tarımsal Üretim İlişkisi: Türkiye Ekonomisi Üzerine Ampirik Bulgular. Tarım Ekonomisi Araştırmaları Dergisi, 8(1), 44-56.
  • Pakdemirli, B., (2019). R&D Expenditures and Growth: An Empirical Analysis on Agricultural Sector of Turkey. Türkiye Tarımsal Araştırmalar Dergisi, 6(3), 342-348. doi: 10.19159/tutad.626298
  • Peng, J, Zhao, Z., & Liu, D. (2022). Impact of Agricultural Mechanizationon Agricultural Production, Income, and Mechanism: Evidence From Hubei Province, China. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.838686
  • Pesaran, H. M. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Pesaran, M. H., & Yamagata, T. (2008). Testing Slope Homogeneity in Large Panels. Journal of Econometrics, 142(1), 50-93.
  • Soyyiğit, S., & Akyol, M. (2021). The Impact of Public R&D Supports on the Increase of Agricultural Productivity: The Case of the EU Member Transition Economies. Turkish Journal of Agricultural and Natural Sciences, 8(1), 30-42. doi: 10.30910/turkjans.726440
  • Subaşı, O., & Ören, M. (2013). The Relationship between Agricultural Research Expenditures and Agricultural Growth in Turkey. Akdeniz University Journal of the Faculty of Agriculture, 26(2), 99-104.
  • Sun, L., Zhu, D., & Chen, A. (2023). Research on the Relationship Between Agricultural Mechanisation and Economic Development Based on Big Data Analysis. In book: Proceedings of the 2022 International Conference on Bigdata Blockchain and Economy Management (ICBBEM) (pp.712-720). doi:10.2991/978-94-6463-030-5_71
  • Süt, A. T. (2021). Gelişmekte Olan Ülkelerde Kentleşmenin Tarımsal Verimlilik Üzerindeki Etkisi. International Eurasian Economic Conference (Ağustos 2021, İstanbul), 493-499 ss. https://avekon.org/papers/2504.pdf Şahin Ulucan, A., 2020. Tarım makineleri ihracatında rekor. http://turktarim.gov.tr/Haber/403/tarim-makineleri-ihracatinda-rekor (Erişim Tarihi: 13.11.2023)
  • Tandoğan, N. Ş. (2022). How Effective is Agricultural Mechanization on Agricultural Production? A Panel Data Analysis. Turkish Journal of Agricultural Economics (TJAE), 28(1), 13-20. doi: 10.24181/tarekoder.1013081 T.C. Moskova Büyükelçiliği Ticaret Müşavirliği, 2022. Rusya Federasyonu tarım alet ve makineleri raporu. https://ticaret.gov.tr/data/5bcc5d4813b876034cfece26/Rusya%20Tar%C4%B1m%20Alet%20ve%20Makinalar%C4%B1%20Raporu%202022.pdf (Erişim Tarihi: 13.11.2023)
  • T.C. Tarım ve Orman Bakanlığı, 2020. https://Arastirma.Tarimorman.Gov.Tr/Koyunculuk/Menu/76/Tarim-4-0. (Erişim Tarihi: 13.11.2023)
  • T.C. Yatırım Ofisi, 2023. Makine. https://www.invest.gov.tr/tr/sectors/Sayfalar/machinery.aspx (Erişim Tarihi: 13.11.2023)
  • Thomala, L., 2020. Number of internet users in China from 2017 to 2023. Statista. Xiaoming, G., Sen, H., & Yu, W. (2020). Influence of Agricultural Mechanization Development on Agricultural Green Transformation in Western China, Based on the ML Index and Spatial Panel Model. Mathematical Problems in Engineering, 2020, 1-17. doi: 10.1155/2020/6351802
  • USDA, Economic Research Service, 2021, https://www.ers.usda.gov/ (Erişim Tarihi: 13.11.2023)
  • Viola, E., & Mendes, V. (2022). Agriculture 4.0 and Climate Change in Brazil. Ambiente & Sociedade, 25(1), 1-23.
  • Yavuz, M. S., Bozkurt G., Kayacan, M., & Çelik, E. İ. (2022). The Relationship Between Alternative Financial Assets and Stock Markets: BRICS-T Example. The Academic Elegance, 9(19), 393-413.
  • Yücel, M. H., & Çalışkan, Z. (2020). The Impact of Agricultural Productivity and Mechanization on Agricultural Employment: Turkey Case. Ekonomik Yaklaşım Dergisi, 31(117), 525-553.
  • Westerlund, J. (2008). Panel Cointegration Tests of The Fisher Effect, Journal of Applied Econometrics, 23, 193-233.

Tarımsal Verimlilik ile İlişkili Faktörlerin Tespiti: BRICS-T Ülkeleri Örneği

Year 2024, Volume: 11 Issue: 2, 524 - 535, 30.04.2024
https://doi.org/10.30910/turkjans.1401633

Abstract

Ekonomik ve sosyal etkileri sayesinde tarım, bir ülke ekonomisinin temelini oluşturan unsurlardandır. Tarım sektörü birçok sektöre hammadde tedarik etmekte ve daha fazla katma değerli ürün ortaya çıkmasını sağlamaktadır. Ayrıca tarım sektörü, tarımsal faaliyetlerin yapıldığı kırsal alanlarda zamanla ortaya çıkan nüfus kaybına rağmen kentleri gıda ve çeşitli hammaddeler açısından beslemeyi sürdürmesi, ülkelerin tarımsal alanlarda verimliliğini arttırıcı etkisi ve dış ticaretteki yeri ile önemini korumaktadır. Tarım 4.0 (akıllı tarım) ise emek gücü ile üretim girdi maliyetlerini minimize ederek yüksek kaliteli, miktarlı ürün üretimi ve bu üretim karşılığında çiftliklerden temin edilen gelirlerin arttırılması noktasında ekonomik katkılar sunmaktadır. Bu çalışmanın amacı, BRICS-T ülkelerinde akıllı tarım (Tarım 4.0) bağlamında tarımsal verimlilik ile ilişkili faktörlerin araştırılmasıdır. Çalışmada panel veri analiz yöntemi kullanılmıştır. Bu çalışmanın özgün değeri, ilgili yıl aralığı ve ülke grubu için Tarım 4.0 kapsamında tarımsal verimlilik ile ilişkilendirilen faktörlerin ekonometrik bir yöntem ile incelenmesi noktasında ortaya çıkmaktadır. Dumitrescu-Hurlin Panel Nedensellik Test sonuçlarına göre, tarımsal verimlilik endeksinden (TVE) kentleşme oranına (KNT) doğru tek yönlü; beşeri sermaye endeksi (BS) ile TVE arasında ise çift yönlü nedensellik ilişkisi tespit edilmiştir. Sonuç olarak, tarımsal kalkınma ve kentleşme politikaları kapsamında beşeri sermayenin geliştirilmesine de odaklanılması gerekmektedir. Bu durum, tarımsal üretkenliği ve genel refahı artırmada ülkeler için faydalı olabilir.

References

  • Ahmed, Z., Zafar, M.W., & Ali, S. (2020). Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustainable Cities and Society, 55, 102064.
  • Alper, A., & Oransay, G. (2015). Cari açık ve finansal gelişmişlik ilişkisinin panel nedensellik analizi ekseninde değerlendirilmesi. Uluslararası Ekonomi ve Yenilik Dergisi, 1(2), 73-85. https://doi.org/10.20979/ueyd.182896
  • Alene, A. D. (2010). Productivity growth and the effects of R&D in African Agriculture. Agricultural Economics, 41(3‐4), 223-2384. https://doi.org/10.1111/j.1574-0862.2010.00450.x
  • Aydemir, S. (2023). Akıllı tarım makineleri Çin’de işgücü tasarrufu sağlıyor. https://haber-alanya.com.tr/akilli-tarim-makineleri-cinde-isgucu-tasarrufu-sagliyor/ (Erişim Tarihi: 13.11.2023)
  • Aydınbaş, G. (2023a). A Study on smart agriculture (agriculture 4.0) from an economic perspective. BILTURK, The Journal of Economics and Related Studies, 5(2), 63-86. doi: 10.47103/bilturk.1218500
  • Aydınbaş, G. (2023b). Politik istikrar ve kişisel gelir arasındaki nedensellik ilişkisi: Brics ve Mist ülkeleri örneği. Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 26, 438-452. https://doi.org/10.29029/busbed.1295438
  • Bekele, W. F. (2020). Determinants of agricultural technology adoption in Ethiopia: A meta-analysis. Cogent Food & Agriculture, 6(1), 1855817. doi: 10.1080/23311932.2020.1855817
  • Boakye, A. Estimating agriculture technologies’ impact on maize yield in rural South Africa. SN Business & Economics, 3, 149 (2023). https://doi.org/10.1007/s43546-023-00530-4
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics, The Review of Economic Studies, 47(1), Pages 239-253, https://doi.org/10.2307/2297111
  • Bulut, R. (2021). Dünya ve Türkiye tarımında makineleşme. Göller Bölgesi Aylık Ekonomi ve Kültür Dergisi Ayrıntı, 9(105), Aralık 2021. https://www.dergiayrinti.com/index.php/ayr/article/view/1607 (Erişim Tarihi: 13.11.2023)
  • Chandio, A. A., Jiang, Y., Rehman, A. and Rauf, A. (2020). Short and Long-Run Impacts of Climate Change on Agriculture: An Empirical Evidence from China. International Journal of Climate Change Strategies and Management, 12: 201-221.
  • DEİK, 2013. Güney Afrika ülke bülteni. www.deik.org.tr › uploads › guney-afrika-ulke-bulteni-2013 (Erişim Tarihi: 13.11.2023)
  • Dumitrescu, E. I., & Hurlin, C. (2012). Testing for granger noncausality in heterogeneous panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014 Dünya Bankası, 2021, https://www.worldbank.org/tr/country/turkey
  • Ercan, Ş., Öztep, R., Güler, D., & Saner, G. (2019). Tarım 4.0 ve Türkiye'de uygulanabilirliğinin değerlendirilmesi. Tarım Ekonomisi Dergisi, 25(2),259-265.
  • Erdinç, Z., & Aydınbaş, G. (2021). Panel Data Analysis of Value-Added Agriculture Determinants. Anadolu University Journal of Social Sciences, 21(1): 213-232.
  • Fedotova, G. V., Larionova, I. S., Maramygin, M. S., Sigidov, Yu I., & Bolaev, B. K., Kulikova, N. N. (2020). Agriculture 4.0. as a New Vector Towards Increasing the Food Security in Russia. IOP Conference Series: Earth and Environmental Science, 677, IV International Scientific Conference: AGRITECH-IV-2020: Agribusiness, Environmental Engineering and Biotechnologies (18-20, November, Krasnoyarsk, Russian Federation) doi: 10.1088/1755-1315/677/3/032016
  • Güneş, M., 2023. Güney Afrika ve Türkiye’nin tarım yönünden karşılaştırılması. https://www.afrikacalismalarimerkezi.com/guney-afrika-ve-turkiyenin-tarim-yonunden-karsilastirilmasi/ (Erişim Tarihi: 13.11.2023)
  • IBEF, 2023. Agriculture 4.0: Future of Indian Agriculture. https://www.ibef.org/agriculture-4-0-future-of-indian-agriculture (Erişim Tarihi: 13.11.2023) Invest in Turkey. 2021. Turkish agri-food industry outlook. https://www.invest.gov.tr/tr/sectors/sayfalar/agrofood.aspx (Erişim Tarihi: 13.11.2023)
  • İTTM, 2019. Türk tarımının global entegrasyonu ve Tarım 4.0. https://itb.org.tr/dosya/akillitarimrapor/proje-sonuc-raporu.pdf?1553592263 (Erişim Tarihi: 13.11.2023)
  • Jiang, Q., Jizhi, L., Hongyun, S. and Yangyue, S. (2022). The Impact of The Digital Economy on Agricultural Green Development: Evidence from China. Agriculture, 12(8), 1107. https://doi.org/10.3390/agriculture12081107 Kaya, M. (2019). Smart farming (Agriculture 4.0) Proposal for the Development of Ağrı. Akademik Bakış Dergisi, (75), 130-156.
  • Koç, A. A., Bayaner, A., Uysal, P., & Subaşı, S. 2016. Factor Demand and Total Factor Productivity in Turkish Agriculture. VII. Tarım Ekonomisi Kongresi (25-27 Mayıs, Isparta), 859-869 ss.
  • Kurt, C. A., 2023. Hindistan Blockchain’i tarım verimini desteklemek için kullanacak. https://tr.cointelegraph.com/news/blockchain-to-support-agricultural-exports-to-be-used
  • Mendes, V., & Viola, E. (2023). Green digitalization? Agriculture 4.0 and the Challenges of Environmental Governance in Brazil. In: Søndergaard, N., de Sá, C. D., Barros-Platiau, A. F. (eds) “Sustainability Challenges of Brazilian Agriculture”. Environment & Policy, 64, Springer, Cham. https://doi.org/10.1007/978-3-031-29853-0_11
  • Nadezhda V. O., & Dmitry V. N. (2022). Russian Agricultural Innovations Prospects in the Context of Global Challenges: Agriculture 4.0. Russian Journal of Economics, ARPHA Platform, 8(1), 29-48.
  • Oğul, B. (2022). Tarımsal Destekler ve Tarımsal Üretim İlişkisi: Türkiye Ekonomisi Üzerine Ampirik Bulgular. Tarım Ekonomisi Araştırmaları Dergisi, 8(1), 44-56.
  • Pakdemirli, B., (2019). R&D Expenditures and Growth: An Empirical Analysis on Agricultural Sector of Turkey. Türkiye Tarımsal Araştırmalar Dergisi, 6(3), 342-348. doi: 10.19159/tutad.626298
  • Peng, J, Zhao, Z., & Liu, D. (2022). Impact of Agricultural Mechanizationon Agricultural Production, Income, and Mechanism: Evidence From Hubei Province, China. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.838686
  • Pesaran, H. M. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Pesaran, M. H., & Yamagata, T. (2008). Testing Slope Homogeneity in Large Panels. Journal of Econometrics, 142(1), 50-93.
  • Soyyiğit, S., & Akyol, M. (2021). The Impact of Public R&D Supports on the Increase of Agricultural Productivity: The Case of the EU Member Transition Economies. Turkish Journal of Agricultural and Natural Sciences, 8(1), 30-42. doi: 10.30910/turkjans.726440
  • Subaşı, O., & Ören, M. (2013). The Relationship between Agricultural Research Expenditures and Agricultural Growth in Turkey. Akdeniz University Journal of the Faculty of Agriculture, 26(2), 99-104.
  • Sun, L., Zhu, D., & Chen, A. (2023). Research on the Relationship Between Agricultural Mechanisation and Economic Development Based on Big Data Analysis. In book: Proceedings of the 2022 International Conference on Bigdata Blockchain and Economy Management (ICBBEM) (pp.712-720). doi:10.2991/978-94-6463-030-5_71
  • Süt, A. T. (2021). Gelişmekte Olan Ülkelerde Kentleşmenin Tarımsal Verimlilik Üzerindeki Etkisi. International Eurasian Economic Conference (Ağustos 2021, İstanbul), 493-499 ss. https://avekon.org/papers/2504.pdf Şahin Ulucan, A., 2020. Tarım makineleri ihracatında rekor. http://turktarim.gov.tr/Haber/403/tarim-makineleri-ihracatinda-rekor (Erişim Tarihi: 13.11.2023)
  • Tandoğan, N. Ş. (2022). How Effective is Agricultural Mechanization on Agricultural Production? A Panel Data Analysis. Turkish Journal of Agricultural Economics (TJAE), 28(1), 13-20. doi: 10.24181/tarekoder.1013081 T.C. Moskova Büyükelçiliği Ticaret Müşavirliği, 2022. Rusya Federasyonu tarım alet ve makineleri raporu. https://ticaret.gov.tr/data/5bcc5d4813b876034cfece26/Rusya%20Tar%C4%B1m%20Alet%20ve%20Makinalar%C4%B1%20Raporu%202022.pdf (Erişim Tarihi: 13.11.2023)
  • T.C. Tarım ve Orman Bakanlığı, 2020. https://Arastirma.Tarimorman.Gov.Tr/Koyunculuk/Menu/76/Tarim-4-0. (Erişim Tarihi: 13.11.2023)
  • T.C. Yatırım Ofisi, 2023. Makine. https://www.invest.gov.tr/tr/sectors/Sayfalar/machinery.aspx (Erişim Tarihi: 13.11.2023)
  • Thomala, L., 2020. Number of internet users in China from 2017 to 2023. Statista. Xiaoming, G., Sen, H., & Yu, W. (2020). Influence of Agricultural Mechanization Development on Agricultural Green Transformation in Western China, Based on the ML Index and Spatial Panel Model. Mathematical Problems in Engineering, 2020, 1-17. doi: 10.1155/2020/6351802
  • USDA, Economic Research Service, 2021, https://www.ers.usda.gov/ (Erişim Tarihi: 13.11.2023)
  • Viola, E., & Mendes, V. (2022). Agriculture 4.0 and Climate Change in Brazil. Ambiente & Sociedade, 25(1), 1-23.
  • Yavuz, M. S., Bozkurt G., Kayacan, M., & Çelik, E. İ. (2022). The Relationship Between Alternative Financial Assets and Stock Markets: BRICS-T Example. The Academic Elegance, 9(19), 393-413.
  • Yücel, M. H., & Çalışkan, Z. (2020). The Impact of Agricultural Productivity and Mechanization on Agricultural Employment: Turkey Case. Ekonomik Yaklaşım Dergisi, 31(117), 525-553.
  • Westerlund, J. (2008). Panel Cointegration Tests of The Fisher Effect, Journal of Applied Econometrics, 23, 193-233.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Sustainable Agricultural Development
Journal Section Research Article
Authors

Gökçen Aydınbaş 0000-0001-9435-5387

Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date December 7, 2023
Acceptance Date April 28, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Aydınbaş, G. (2024). Tarımsal Verimlilik ile İlişkili Faktörlerin Tespiti: BRICS-T Ülkeleri Örneği. Turkish Journal of Agricultural and Natural Sciences, 11(2), 524-535. https://doi.org/10.30910/turkjans.1401633