Research Article
BibTex RIS Cite

Hünnap Bitkisinde (Ziziphus jujuba) Metcalfa pruinosa (Hemiptera: Flatidae) Zararlısının YOLOv5 Model Serisi ile Tespiti

Year 2024, Volume: 11 Issue: 3, 797 - 806, 24.07.2024
https://doi.org/10.30910/turkjans.1475954

Abstract

Bu çalışma, hünnap bitkilerinde gözlemlenen Metcalfa pruinosa zararlısının erginlerini tespit etmek amacıyla YOLOv5 algoritmasının v5s, v5m ve v5l modellerini kullanmayı hedeflemiştir. Böylelikle, tarımsal mücadelenin başlama anını belirlemek için kullanılan cihazlar ve zararlı popülasyon yoğunluğuna göre ilaçlama yapan robotik sistemler için bir kaynak teşkil etmektedir. Modellerin eğitimi için kullanılacak görüntüler elde edildikten sonra, veri artırımı yöntemleri kullanılarak veri setleri genişletilmiş ve görüntüler Roboflow kullanılarak etiketlenmiştir. Ardından, bu veriler kullanılarak modeller eğitilmiş ve eğitilen modellerin box_loss, obj_loss, precision, recall, mAP_0.5 ve mAP_0.5:0.95 gibi performans metrikleri analiz edilmiştir. YOLOv5s modelinde, box_loss ve obj_loss performans metriklerinin sırasıyla 0.02858 ve 0.0055256 değerleri ile en yüksek olduğu bulunmuştur. YOLOv5m modelinde, recall performans metriğinin 0.98127 değeri ile en yüksek olduğu tespit edilmiştir. YOLOv5l modelinde ise precision, mAP_0.5 ve mAP_0.5:0.95 performans metriklerinin sırasıyla 0.98122, 0.99500 ve 0.67864 değerleri ile en yüksek olduğu belirlenmiştir. Sonuç olarak, YOLOv5l modeli diğerlerine göre daha yüksek doğruluk sergilemektedir. YOLOv5l modelinin, Metcalfa pruinosa zararlısının tespiti için yeterli olduğu düşünülmektedir.

References

  • Ahmad, I., Yang, Y., Yue, Y., Ye, C., Hassan, M., Cheng, Xi., Wu, Y., Zhang, Y. 2022. Deep learning based detector YOLOv5 for identifying insect pests. Applied Sciences, 12(19): 10167.
  • Bütüner, A. K., Şahin, Y. S., Erdinç, A., Erdoğan, H. 2023. Machine learning-based detection and severity assessment of sunflower powdery mildew: A precision agriculture approach. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 37(2): 387-400.
  • Bütüner, A. K., Şahin, Y. S., Erdinç, A., Erdoğan, H., Lewis, E. 2024. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Journal of Agricultural Sciences, 30(1): 99-107.
  • Byeon, D. H., Jung, J. M., Jung, S., Lee, W. H. 2018. Prediction of global geographic distribution of Metcalfa pruinosa using CLIMEX. Entomological Research, 48(2): 99-107.
  • Choi, S. H., Ahn, J. B., Kozukue, N., Levin, C. E., Friedman, M. 2011. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. Journal of Agricultural and Food Chemistry, 59(12): 6594-6604.
  • Ciceoi, R., Dobrin, I., Mardare, E. Ş., Dicianu, E. D., Stănıcă, F. 2017. Emerging pests of Ziziphus jujuba crop in Romania. Scientific Papers. Series B. Horticulture, 61: 143-153.
  • Domingues, T., Brandão, T., Ribeiro, R., Ferreira, J. C. 2022. Insect detection in sticky trap images of tomato crops using machine learning. Agriculture, 12(11): 1967.
  • Erdoğan, H., Şahin, Y. S., Bütüner, A. 2023. Detection of cucurbit powdery mildew, Sphaerotheca fuliginea (Schlech.) Polacci by thermal imaging in field conditions. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 1(23): 189-192.
  • Gnezdilov, V. M., Sugonyaev, E. S. 2009. First record of Metcalfa pruinosa (Homoptera: Fulgoroidea: Flatidae) from Russia. Zoosystematica Rossica, 18(2): 260-261.
  • Grygorieva, O., Abrahamová, V., Karnatovská, M., Bleha, R., Brindza, J. 2014. Morphological characteristics of fruits, drupes and seeds in genotypes of Ziziphus jujuba Mill. Potravinarstvo, 8(1): 306-314.
  • Hürkan, Y. K. 2019. Hünnap (Ziziphus jujuba Mill.) meyvesi: Geçmişten günümüze tıbbi önemi. Journal of the Institute of Science and Technology, 9(3): 1271-1281.
  • Ivanišová, E., Grygorieva, O., Abrahamova, V., Schubertova, Z., Terentjeva, M., Brindza, J. 2017. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). Journal of Berry Research, 7(4): 249-260.
  • Ji, X., Cheng, Y., Tian, J., Zhang, S., Jing, Y., Shi, M. 2021. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chemical and Biological Technologies in Agriculture, 8: 1-7.
  • Kang, J., Zhao, L., Wang, K., Zhang, K. 2023. Research on an improved YOLOV8 image segmentation model for crop pests. Advances in Computer, Signals and Systems, 7(3): 1-8.
  • Kavas, İ., Dalkılıç, Z. 2015. Bazı hünnap genotiplerinin morfolojik, fenolojik Ve pomolojik özelliklerinin belirlenmesi ve Mmelezleme olanaklarının araştırılması. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 12(1): 57-72.
  • Kim, M. J., Baek, S., Lee, J. H. 2020. Egg hatching and first instar falling models of Metcalfa pruinosa (Hemiptera: Flatidae). Insects, 11(6): 345.
  • Kim, Y., Kim, M., Hong, K. J., Lee, S. 2011. Outbreak of an exotic flatid, Metcalfa pruinosa (Say)(Hemiptera: Flatidae), in the capital region of Korea. Journal of Asia-Pacific Entomology, 14(4): 473-478.
  • Lee, D. S., Bae, Y. S., Byun, B. K., Lee, S., Park, J. K., Park, Y. S. 2019. Occurrence prediction of the citrus flatid planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea using a random forest model. Forests, 10(7): 583.
  • Li, D., Ahmed, F., Wu, N., Sethi, A. I. 2022. Yolo-JD: A deep learning network for jute diseases and pests detection from images. Plants, 11(7): 937.
  • Li, J. W., Fan, L. P., Ding, S. D., Ding, X. L. 2007. Nutritional composition of five cultivars of Chinese jujube. Food Chemistry, 103(2): 454-460.
  • Liu, J., Wang, X. 2020. Tomato diseases and pests detection based on improved YOLOv3 convolutional neural network. Frontiers in Plant Science, 11: 898.
  • Mahajan R. T., Chopda M. Z, 2009. PhytoPharmacology of Ziziphus jujuba Mill. A plant review. Pharmacognosy Reviews, 3(6): 320-329.
  • Mengjun L, 2003. Genetic diversity of chinese jujube (Ziziphus jujuba Mill.). Acta Horticulturae, 623: 351–355.
  • Nguyen, D. T., Nguyen, T. N., Kim, H., Lee, H. J. 2019. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(8): 1861-1873.
  • Preda, C., Skolka, M. 2011. Range expansion of Metcalfa pruinosa (Homoptera: Fulgoroidea) in Southeastern Europe. Ecologia Balkanica, 3(1): 79-87.
  • Sorbelli, F. B., Palazzetti, L., Pinotti, C. M. 2023. YOLO-based detection of Halyomorpha halys in orchards using RGB cameras and drones. Computers and Electronics in Agriculture, 213: 108228.
  • Stănică, F. 2019. Twenty years of jujube (Ziziphus jujuba Mill.) research in Romania. Scientific Papers. Series B. Horticulture, 63: 17-24.
  • Strauss, G. 2010. Pest risk analysis of Metcalfa pruinosa in Austria. Journal of Pest Science, 83: 381-390.
  • Szelényi, M. O., Erdei, A. L., Molnár, B. P., Tholt, G. 2024. Antennal olfactory sensitivity and its age‐dependence in the hemimetabolous insect Metcalfa pruinosa. Journal of Applied Entomology. 00: 1-10.
  • Şahin, Y. S., Bütüner, A. K., Erdoğan, H. (2023a). Potential for early detection of powdery mildew in okra under field conditions using thermal imaging. Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development, 23(3): 863-870.
  • Şahin, Y. S., Erdinç, A., Bütüner, A. K., Erdoğan, H. (2023b). Detection of Tuta absoluta larvae and their damages in tomatoes with deep learning-based algorithm. International Journal of Next-Generation Computing, 14(3): 555-565.
  • Wang, Y., Xu, R., Bai, D., Lin, H. 2023. Integrated learning-based pest and disease detection method for tea leaves. Forests, 14(5): 1012.
  • Wen, C., Chen, H., Ma, Z., Zhang, T., Yang, C., Su, H., Chen, H. 2022. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting. Frontiers in Plant Science, 13: 973985.
  • Xu, X., Shi, J., Chen, Y., He, Q., Liu, L., Sun, T., Ding, R., Lu, Y., Xue, C., Qiao, H. 2023. Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level. Frontiers in Plant Science, 14: 1200901.
  • Yang, H., Lin, D., Zhang, G., Zhang, H., Wang, J., Zhang, S. 2023. Research on detection of rice pests and diseases Based on improved YOLOv5 algorithm. Applied Sciences, 13(18): 10188.
  • Zhang, X., Bu, J., Zhou, X., Wang, X. 2023. Automatic pest identification system in the greenhouse based on deep learning and machine vision. Frontiers in Plant Science, 14: 1255719.

Detection of the Metcalfa pruinosa (Hemiptera: Flatidae) pest on the Jujube plant (Ziziphus jujuba) using a sequence of YOLOv5 models

Year 2024, Volume: 11 Issue: 3, 797 - 806, 24.07.2024
https://doi.org/10.30910/turkjans.1475954

Abstract

Bu çalışma, hünnap bitkilerinde gözlemlenen Metcalfa pruinosa zararlısının erginlerini tespit etmek amacıyla YOLOv5 algoritmasının v5s, v5m ve v5l modellerini kullanmayı hedeflemiştir. Böylelikle, tarımsal mücadelenin başlama anını belirlemek için kullanılan cihazlar ve zararlı popülasyon yoğunluğuna göre ilaçlama yapan robotik sistemler için bir kaynak teşkil etmektedir. Modellerin eğitimi için kullanılacak görüntüler elde edildikten sonra, veri artırımı yöntemleri kullanılarak veri setleri genişletilmiş ve görüntüler Roboflow kullanılarak etiketlenmiştir. Ardından, bu veriler kullanılarak modeller eğitilmiş ve eğitilen modellerin box_loss, obj_loss, precision, recall, mAP_0.5 ve mAP_0.5:0.95 gibi performans metrikleri analiz edilmiştir. YOLOv5s modelinde, box_loss ve obj_loss performans metriklerinin sırasıyla 0.02858 ve 0.0055256 değerleri ile en yüksek olduğu bulunmuştur. YOLOv5m modelinde, recall performans metriğinin 0.98127 değeri ile en yüksek olduğu tespit edilmiştir. YOLOv5l modelinde ise precision, mAP_0.5 ve mAP_0.5:0.95 performans metriklerinin sırasıyla 0.98122, 0.99500 ve 0.67864 değerleri ile en yüksek olduğu belirlenmiştir. Sonuç olarak, YOLOv5l modeli diğerlerine göre daha yüksek doğruluk sergilemektedir. YOLOv5l modelinin, Metcalfa pruinosa zararlısının tespiti için yeterli olduğu düşünülmektedir.

Thanks

The authors would like to thank Prof. Dr. Alper Susurluk and Research Assistant Alperen Kaan Bütüner for their technical support in identifying the species of the pest.

References

  • Ahmad, I., Yang, Y., Yue, Y., Ye, C., Hassan, M., Cheng, Xi., Wu, Y., Zhang, Y. 2022. Deep learning based detector YOLOv5 for identifying insect pests. Applied Sciences, 12(19): 10167.
  • Bütüner, A. K., Şahin, Y. S., Erdinç, A., Erdoğan, H. 2023. Machine learning-based detection and severity assessment of sunflower powdery mildew: A precision agriculture approach. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 37(2): 387-400.
  • Bütüner, A. K., Şahin, Y. S., Erdinç, A., Erdoğan, H., Lewis, E. 2024. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Journal of Agricultural Sciences, 30(1): 99-107.
  • Byeon, D. H., Jung, J. M., Jung, S., Lee, W. H. 2018. Prediction of global geographic distribution of Metcalfa pruinosa using CLIMEX. Entomological Research, 48(2): 99-107.
  • Choi, S. H., Ahn, J. B., Kozukue, N., Levin, C. E., Friedman, M. 2011. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. Journal of Agricultural and Food Chemistry, 59(12): 6594-6604.
  • Ciceoi, R., Dobrin, I., Mardare, E. Ş., Dicianu, E. D., Stănıcă, F. 2017. Emerging pests of Ziziphus jujuba crop in Romania. Scientific Papers. Series B. Horticulture, 61: 143-153.
  • Domingues, T., Brandão, T., Ribeiro, R., Ferreira, J. C. 2022. Insect detection in sticky trap images of tomato crops using machine learning. Agriculture, 12(11): 1967.
  • Erdoğan, H., Şahin, Y. S., Bütüner, A. 2023. Detection of cucurbit powdery mildew, Sphaerotheca fuliginea (Schlech.) Polacci by thermal imaging in field conditions. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 1(23): 189-192.
  • Gnezdilov, V. M., Sugonyaev, E. S. 2009. First record of Metcalfa pruinosa (Homoptera: Fulgoroidea: Flatidae) from Russia. Zoosystematica Rossica, 18(2): 260-261.
  • Grygorieva, O., Abrahamová, V., Karnatovská, M., Bleha, R., Brindza, J. 2014. Morphological characteristics of fruits, drupes and seeds in genotypes of Ziziphus jujuba Mill. Potravinarstvo, 8(1): 306-314.
  • Hürkan, Y. K. 2019. Hünnap (Ziziphus jujuba Mill.) meyvesi: Geçmişten günümüze tıbbi önemi. Journal of the Institute of Science and Technology, 9(3): 1271-1281.
  • Ivanišová, E., Grygorieva, O., Abrahamova, V., Schubertova, Z., Terentjeva, M., Brindza, J. 2017. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). Journal of Berry Research, 7(4): 249-260.
  • Ji, X., Cheng, Y., Tian, J., Zhang, S., Jing, Y., Shi, M. 2021. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chemical and Biological Technologies in Agriculture, 8: 1-7.
  • Kang, J., Zhao, L., Wang, K., Zhang, K. 2023. Research on an improved YOLOV8 image segmentation model for crop pests. Advances in Computer, Signals and Systems, 7(3): 1-8.
  • Kavas, İ., Dalkılıç, Z. 2015. Bazı hünnap genotiplerinin morfolojik, fenolojik Ve pomolojik özelliklerinin belirlenmesi ve Mmelezleme olanaklarının araştırılması. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 12(1): 57-72.
  • Kim, M. J., Baek, S., Lee, J. H. 2020. Egg hatching and first instar falling models of Metcalfa pruinosa (Hemiptera: Flatidae). Insects, 11(6): 345.
  • Kim, Y., Kim, M., Hong, K. J., Lee, S. 2011. Outbreak of an exotic flatid, Metcalfa pruinosa (Say)(Hemiptera: Flatidae), in the capital region of Korea. Journal of Asia-Pacific Entomology, 14(4): 473-478.
  • Lee, D. S., Bae, Y. S., Byun, B. K., Lee, S., Park, J. K., Park, Y. S. 2019. Occurrence prediction of the citrus flatid planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea using a random forest model. Forests, 10(7): 583.
  • Li, D., Ahmed, F., Wu, N., Sethi, A. I. 2022. Yolo-JD: A deep learning network for jute diseases and pests detection from images. Plants, 11(7): 937.
  • Li, J. W., Fan, L. P., Ding, S. D., Ding, X. L. 2007. Nutritional composition of five cultivars of Chinese jujube. Food Chemistry, 103(2): 454-460.
  • Liu, J., Wang, X. 2020. Tomato diseases and pests detection based on improved YOLOv3 convolutional neural network. Frontiers in Plant Science, 11: 898.
  • Mahajan R. T., Chopda M. Z, 2009. PhytoPharmacology of Ziziphus jujuba Mill. A plant review. Pharmacognosy Reviews, 3(6): 320-329.
  • Mengjun L, 2003. Genetic diversity of chinese jujube (Ziziphus jujuba Mill.). Acta Horticulturae, 623: 351–355.
  • Nguyen, D. T., Nguyen, T. N., Kim, H., Lee, H. J. 2019. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(8): 1861-1873.
  • Preda, C., Skolka, M. 2011. Range expansion of Metcalfa pruinosa (Homoptera: Fulgoroidea) in Southeastern Europe. Ecologia Balkanica, 3(1): 79-87.
  • Sorbelli, F. B., Palazzetti, L., Pinotti, C. M. 2023. YOLO-based detection of Halyomorpha halys in orchards using RGB cameras and drones. Computers and Electronics in Agriculture, 213: 108228.
  • Stănică, F. 2019. Twenty years of jujube (Ziziphus jujuba Mill.) research in Romania. Scientific Papers. Series B. Horticulture, 63: 17-24.
  • Strauss, G. 2010. Pest risk analysis of Metcalfa pruinosa in Austria. Journal of Pest Science, 83: 381-390.
  • Szelényi, M. O., Erdei, A. L., Molnár, B. P., Tholt, G. 2024. Antennal olfactory sensitivity and its age‐dependence in the hemimetabolous insect Metcalfa pruinosa. Journal of Applied Entomology. 00: 1-10.
  • Şahin, Y. S., Bütüner, A. K., Erdoğan, H. (2023a). Potential for early detection of powdery mildew in okra under field conditions using thermal imaging. Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development, 23(3): 863-870.
  • Şahin, Y. S., Erdinç, A., Bütüner, A. K., Erdoğan, H. (2023b). Detection of Tuta absoluta larvae and their damages in tomatoes with deep learning-based algorithm. International Journal of Next-Generation Computing, 14(3): 555-565.
  • Wang, Y., Xu, R., Bai, D., Lin, H. 2023. Integrated learning-based pest and disease detection method for tea leaves. Forests, 14(5): 1012.
  • Wen, C., Chen, H., Ma, Z., Zhang, T., Yang, C., Su, H., Chen, H. 2022. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting. Frontiers in Plant Science, 13: 973985.
  • Xu, X., Shi, J., Chen, Y., He, Q., Liu, L., Sun, T., Ding, R., Lu, Y., Xue, C., Qiao, H. 2023. Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level. Frontiers in Plant Science, 14: 1200901.
  • Yang, H., Lin, D., Zhang, G., Zhang, H., Wang, J., Zhang, S. 2023. Research on detection of rice pests and diseases Based on improved YOLOv5 algorithm. Applied Sciences, 13(18): 10188.
  • Zhang, X., Bu, J., Zhou, X., Wang, X. 2023. Automatic pest identification system in the greenhouse based on deep learning and machine vision. Frontiers in Plant Science, 14: 1255719.
There are 36 citations in total.

Details

Primary Language English
Subjects Precision Agriculture Technologies, Agricultural Machine Systems, Agricultural Machines
Journal Section Research Article
Authors

Atilla Erdinç 0000-0002-0907-9443

Hilal Erdoğan 0000-0002-0387-2600

Publication Date July 24, 2024
Submission Date April 30, 2024
Acceptance Date July 16, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Erdinç, A., & Erdoğan, H. (2024). Detection of the Metcalfa pruinosa (Hemiptera: Flatidae) pest on the Jujube plant (Ziziphus jujuba) using a sequence of YOLOv5 models. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(3), 797-806. https://doi.org/10.30910/turkjans.1475954