Research Article
BibTex RIS Cite

Trend Analysis and Spatial Distribution of Surface Soil Temperatures in Türkiye

Year 2025, Volume: 12 Issue: 2, 342 - 357, 16.04.2025
https://doi.org/10.30910/turkjans.1598495

Abstract

Soil temperature is a crucial factor affecting soil's physical, chemical, and biological processes. In particular, the rate of biochemical activities and the soil-plant-water balance are affected by soil temperature. Soil temperature has an important role in many issues such as soil management, water movement in the soil, and planting time determination. Therefore, to know the soil temperature and make predictions about its change in the coming years, the soil temperature trend must also be known. Today, there are many studies on soil temperature. However, studies on the trend of soil temperature are limited, especially in Türkiye. In this study, soil temperature trends over the period between 1981 and 2021 were analyzed on a monthly scale at 5 and 20 cm depths using 73 meteorological stations in Türkiye. Also, the relationships between air and soil temperature were examined during the same period. The results yielded a high correlation between air and soil temperature. According to the monthly trend analysis of soil temperature, there was a predominance of positive trends at both soil depths. For 5 cm and 20 cm-depths, the distribution of significant positive trends was the highest in March (78.08% and 83.56%, respectively), while significant negative trend distribution was the highest in June (9.59%) and July (4.11%), respectively. Increasing soil temperatures will affect many soil characteristics and agricultural production processes. It should be noted that the increase in soil temperature may positively affect plant germination and root development, but soil moisture balance and biochemical negatively affect soil properties. Planning sustainable soil management practices, including soil tillage, to reduce the increase in soil temperatures has become necessary. Therefore, activities that may cause an increase in soil temperature should be controlled and monitored.

Thanks

We would like to thank the General Directorate of Meteorological Services for their contribution.

References

  • Al-Kayssi, A. W., Al-Karaghouli, A. A., Hasson, A. M., & Beker, S. A. (1990). Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. Journal of Agricultural Engineering Research, 45, 241-252.
  • Araghi, A., Mousavi-Baygi, M., & Adamowski, J. (2017). Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil and Tillage Research, 174, 177-192.
  • Atalay, İ., (2011). Türkiye Geography and Geopolitics. 8. Baskı, Meta Basım Matbaacılık Hizmetleri.
  • Awe, G.O., Reichert, J.M., Wendroth, O.O., (2015). Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil Tillage Research 150: 93-106. https:// doi.org/10.1016/j.still.2015.01.013
  • Aydın, G., Çullu, M., Erşahin, S., Erdoğan, E., Atanır, L., Yorulmaz, A., Çilek, A., Ersoy, M., Miavaghi, S., Kapur, S. (2016). “Turkey: Mapping Soil Carbon Stock”. Encyclopedia of Soil Science, Third Edition. Taylor & Francis. DOI: 10.1081/E-ESS3-120052900
  • Biberdzic, M., Barac, S., Lalevic, D., Djikic, A., Prodanovic, D., & Rajicic, V. (2020). Influence of soil tillage system on soil compaction and winter wheat yield. Chilean journal of agricultural research, 80(1), 80-89.
  • Blanco‐Canqui, H., & Ruis, S. J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5), 1527-1576.
  • Bolat, İ., (2023). Relationships between air temperature and soil temperature at different depths: The case of Bartın
  • Bollero, G. A., Bullock, D. G., & Hollinger, S. E. (1996). Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agronomy Journal, 88(3), 385-390.
  • Bordonal, R.O.; Menandro, L.M.S.; Barbosa, L.C.; Lal, R.; Milori, D.M.B.P.; Kolln, O.T.; Franco, H.C.J.; Carvalho, J.L.N. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma 328: 79-90. https://doi.org/10.1016/j.Geoderma.2018.05.003
  • Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248-260.
  • Burn, D.H. ve Elnur, M.A.H. (2002). Detection of Hydrologic Trends and Variability, Journal of Hydrology, 255, 107-122.
  • Caloiero, T. (2015). Analysis of rainfall trend in New Zealand. Environmental Earth Sciences, 73, 6297-6310. Castioni, G.A.; Cherubin, M.R.; Menandro, L.M.S.; Sanches, G.M.; Bordonal, R.O.; Barbosa, L.C.; Franco, H.C.J.; Carvalho, J.L.N. (2018). Soil physical quality response to sugarcane straw removal in Brazil: a multi-approach assessment. Soil Tillage Research 184: 301-309. https://doi. org/10.1016/j.still.2018.08.007
  • Cheng L, Zhang N, Yuan M, Xiao J, Qin Y, Deng Y, Tu Q, Xue K, Van Nostrand JD, Wu L, He Z, Zhou X, Leigh MB, Konstantinidis KT, Schuur EAG, Luo Y, Tiedje JM, Zhou J (2017) Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J 11:1825– 1835.
  • Cherubin, M. R., Bordonal, R. O., Castioni, G. A., Guimaraes, E. M., Lisboa, I. P., Moraes, L. A., ... & Carvalho, J. L. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163, 113315.
  • Cherubin, M.R. (2019). Lisboa, I.P.; Silva, A.G.B.; Varanda, L.L.; Bordonal, R.O.; Carvalho, J.L.N.; Otto, R.; Pavinato, P.S.; Soltangheisi, A.; Cerri, C.E.P. Sugarcane straw removal: implications to soil fertility and fertilizer demand in Brazil. Bioenergy Research 12: 888-900.
  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M.Z., Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in agronomy, 166, 131-196.
  • Chudinova, S. M., Frauenfeld, O. W., Barry, R. G., Zhang, T., & Sorokovikov, V. A. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. Journal of Geophysical Research: Earth Surface, 111(F2).
  • Demir, Y., & Mirici, M. (2020). Effect of land use and topographic factors on soil organic carbon content and mapping of organic carbon distribution using regression kriging method. Carpathian Journal of Earth and Environmental Sciences, 15(2), 311-322.
  • Demir, Y., Doğan Demir, A., (2023). Changes in Some Soil Quality Due to Global Climate, Chapter 5. Envıronmental Compulsion and Agrıculture. İksad Publications Press. P. 121-142
  • Derpsch, R., Franzluebbers, A. J., Duiker, S. W., Reicosky, D. C., Koeller, K., Friedrich, T., … Weiss, K. (2014). Why do we need to standardize no tillage research? Soil & Tillage Research, 137, 16–22. https://doi.org/ 10.1016/j.still.2013.10.002
  • Dinç, U. Şenol, S. 1998. Soil Survey and Mapping. Univ. of Çukurova, Faculty of Agriculture Pub No. A-50. Adana.
  • Doğan Demir, A., Demir, Y.(2016). Mean, Minumum and Maximum Temperature Trends in Bingol. Middle East Journal of Science, 2(2), 101-109.
  • Doğan Demir, A., Demir, Y., Şahin U., Meral, R., (2017). Trend Analyses of Temperature and Precipitation and Effect on Agricultural in Bingol Province. Turkısh Journal of Agrıcultural and Natural Sciences, 4 (3), 284-291.
  • Dorau, K., Bamminger, C., Koch, D., & Mansfeldt, T. (2022). Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany. Climatic Change, 170(1-2), 9.
  • Ekberli, İ., & Sarılar, Y. (2015). Determination of Damping Depth and Retardation Time of Soil Temperature Along Soil Profile. Journal of Agriculture Faculty of Ege University, 52(2), 219-227.
  • Ekberli, İ., Gülser, C., & Özdemir, N. (2017). Using parabolic function in prediction of temperature at different soil depths. Journal of Soil Science and Plant Nutrition, 5(1), 34-38.
  • Elias, E. H., Flynn, R., Idowu, O. J., Reyes, J., Sanogo, S., Schutte, B. J., Sutherland, C. (2019). Crop vulnerability to weather and climate risk: Analysis of interacting systems and adaptation efficacy for sustainable crop production. Sustainability, 11(23), 6619.
  • Elibüyük, M., & Yılmaz, E. (2010). Altitude Steps and Slope Groups of Turkey In Comparison with Geographical Regions and Sub-Regions. Turkish Journal of Geographical Sciences, 8(1), 27-56.
  • Elizaberashivili ES, Urashadze TF, Elizaberashivili ME, et al. Temperature regime of some soil types in Georgia. Eurasian soil science. 2010;43(4):427–435.
  • Fang, C., Smith, P., Moncrieff, J. B., Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433(7021), 57-59.
  • Fang, X., Luo, S., Lyu, S. (2019). Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theoretical and applied climatology, 135, 169-181.
  • Fowler, D. B., Limin, A. E., Ritchie, J. T. (1999). Low‐temperature tolerance in cereals: model and genetic interpretation. Crop Science, 39(3), 626-633.
  • Gao, H., & Shao, M. (2015). Effects of temperature changes on soil hydraulic properties. Soil and Tillage Research, 153, 145-154.
  • George R. K., 2001. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Analysis: Theory, Methods ve Applications, 7, 1737-178.
  • Gilbert RO (1987). Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold.)
  • Grant, S. A., & Bachmann, J. (2002). Effect of temperature on capillary pressure. Geophysical Monograph-American Geophysical Union, 129, 199-212.
  • Guleryuz, D. (2022). Estimation of soil temperatures with machine learning algorithms—Giresun and Bayburt stations in Turkey. Theoretical and Applied Climatology, 147(1), 109-125.
  • Gülser, C., Ekberli, I., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Sciences, 4(3): 418‐423.
  • Haruna, S. I., Anderson, S. H., Udawatta, R. P., Gantzer, C. J., Phillips, N. C., Cui, S., & Gao, Y. (2020). Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment, 3(1), e20105.
  • Hatfield, J. L., Perrier, A., & Jackson, R. D. (1983). Estimation of evapotranspiration at one time-of-day using remotely sensed surface temperatures. In Developments in agricultural and managed forest ecology (Vol. 12, pp. 341-350). Elsevier.
  • He, H., Dyck, M. F., Horton, R., Li, M., Jin, H., & Si, B. (2018). Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method. Advances in agronomy, 148, 173-230.
  • Hillel, D., 1998. Environmental Soil Physics. Academic Press, New York, 771 pp.
  • Hodam, S., Sarkar, S., Marak, A. G. R., Bandyopadhyay, A., & Bhadra, A. (2017). Spatial Interpolation of Reference Evapotranspiration in India: Comparison of IDW and Kriging Methods. Journal of The Institution of Engineers (India): Series A, 98(4), 511–524. https://doi.org/10.1007/s40030-017-0241-z
  • Isaaks, E. H., & Srivastava, R. . (1989). An introduction to applied geo-statistics. Oxford University Press. Jahromi, K. F., Sabziparvar, A. A., & Mahmoudvand, R. (2021). Spectral analysis of soil temperature and their coincidence with air temperature in Iran. Environmental monitoring and assessment, 193(2), 72.
  • Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 37-49.
  • Johnson, J.M.F.; Strock, J.S.; Tallaksen, J.E.; Reese, M. 2016. Corn stover harvest changes soil hydrology and soil aggregation. Soil Tillage Research 161: 106-115.
  • Kantarcı, M. D., 2000. Soil Science. Istanbul University Forestry Faculty Publications, No 4261/462, 2. Press, ISBN: ISBN: 975-404-588-7, İstanbul, 420 s.
  • Kapur, S., Akça, E., & Günal, H. (Eds.). (2017). The soils of Turkey. Springer.
  • Kara, F., & Cemek, B. (2019). Estimation of soil temperatures by using artificial neural networks for the provinces of Middle Black Sea Region. Derim, 36(2), 192-198.
  • Kerridge, B., Hornbuckle, J. W., Christen, E. W., & Faulkner, R. D. (2008). Soil spatial variability effects on irrigation efficiency. In Irrigation Australia Conference.'Melbourne, May (pp. 20-22).
  • Khambhammettu, P. (2005). Mann-Kendall analysis for the Fort Ord site. USACE, HydroGeoLogic, Inc., Memorandum http://www. fortordcleanup. com/ar_pdfs/AR-OU1-520C/Appendices/Appendix% 20D. pdf [last seen: February 2011].
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627.
  • Licht, M. A., & Al-Kaisi, M. (2005). Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage research, 80(1-2), 233-249.
  • Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., ... & Dong, Q. (2021). Tillage effects on soil properties and crop yield after land reclamation. Scientific Reports, 11(1), 4611.
  • Martias AD, Musil S. Temperature and thermal diffusivity within a range land soil near Oracle, Arizona. Journal of the Arizona–Nevada Academy of science. 2012;44(1):15–21
  • Martinez, D. C. M., & Narducci, M. S. (2020). Spatial variation prediction and mapping of soil temperature. In 2020 Virtual Symposium in Plant Omics Sciences (OMICAS) (pp. 1-6). IEEE.
  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
  • MGM., (2022). Meteoroloji Genel Müdürlüğü, İklim sınıflandırmaları. Erişim adresi: http://www. mgm. gov. tr/FILES/iklim/iklim_ siniflandirmalari. pdf. (in Turkish)
  • Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494-502.
  • Ochsnor TE, Horton R, Ren T. A new perspective on soil thermal properties. Soil science society of American journal. 2001;65(6):1641–1647.
  • Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res, 8(1), 34-37.
  • Paredes, F.P.; Portilho, I.I.R.; Mercante, F.M. 2015. Microbiological attributes of the soil under cultivation of sugar cane with and without burning straw. Semina. Ciências Agrárias 36: 151-164 (in Portuguese, with abstract in English). province, Türkiye. Anatolian Journal of Forest Research, 9(2), 144-149.
  • Qiu, G. Y., & Ben-Asher, J. (2010). Experimental determination of soil evaporation stages with soil surface temperature. Soil Science Society of America Journal, 74(1), 13-22.
  • Reginato, R. J., Idso, S. B., Vedder, J. F., Jackson, R. D., Blanchard, M. B., & Goettelman, R. (1976). Soil water content and evaporation determined by thermal parameters obtained from ground‐based and remote measurements. Journal of Geophysical Research, 81(9), 1617-1620.
  • Repo, T., Leinonen, I., Ryyppö, A., & Finér, L. (2004). The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiologia Plantarum, 121(1), 93-100.
  • Saboohi, R., Soltani, S., Khodagholi, M., 2012. Trend analysis of temperature parameters in Iran. Theor. Appl. Climatol. 109, 529–547.
  • Sándor, R., & Fodor, N. (2012). Simulation of soil temperature dynamics with models using different concepts. The scientific world journal, 2012(1), 590287.
  • She, X., Wang, Y., Xu, H., Chi Edman Tsang, S., & Ping Lau, S. (2022). Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angewandte Chemie International Edition, 61(49), e202211396.
  • Song, Y., Zhou, D., Zhang, H., Li, G., Jin, Y., & Li, Q. (2013). Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58, 907-912.
  • Sönmez, B. (2011). Çorak Toprakların Islahı ve Yönetimi, Bilim ve Aklın Aydınlığında Eğitim (in Türkiye), Sayı, 134, S. 52-56.
  • Steinmaus, S. J., Prather, T. S., & Holt, J. S. (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51(343), 275-286.
  • Stone, P. J., Sorensen, I. B., & Jamieson, P. D. (1999). Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field crops research, 63(2), 169-178.
  • Thapa, R., Tully, K.L., Cabrera, M., Dann, C., Schomberg, H.H., Timlin, D., Gaskin, J., Reberg-Horton, C., Mirsky, S.B., (2021a). Cover crop residue moisture content controls diurnal variations in surface residue decomposition. Agric For Meteorol 308–309:108537. https://doi.org/10.1016/j.agrformet.2021.108537
  • Thapa, R., Tully, K.L., Cabrera, M.L., Dann, C., Schomberg, H.H., Timlin, D., Reberg-Horton, C., Gaskin, J., Davis, B.W,, Mirsky, S.B., (2021b). Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biol Fertil Soils 57:485–498. https://doi.org/10.1007/s00374-021-01543-7
  • Tonkaz, T., Doğan, E., & Aydemir, S. (2007). Spatial changes in soil temperatures in the GAP Region and their relationships with air temperature. Journal of Harran University Faculty of Agriculture , 11(1-2), 55-61.
  • Valim, W.C.; Panachuki, E.; Pavei, D.S.; Sobrinho, T.A.; Almeida, W.S. 2016. Effect of sugarcane waste in the control of interrill erosion. Semina. Ciências Agrárias 37: 1155-1164.
  • Veiga, M. D., Reinert, D. J., & Reichert, J. M. (2010). Tillage systems and nutrient sources affecting soil cover, temperature and moisture in a clayey Oxisol under corn. Revista Brasileira de Ciência do Solo, 34, 2011-2020.
  • Wang, S., Zhang, X., Adhikari, K., Roland, B., Zhuang, Q., Wang, Z., ... & Qian, F. (2023). Predicting soil organic carbon stocks under future land use and climate change conditions in Northeast China. Environmental Impact Assessment Review, 103, 107278.
  • Waring, R. H., & Running, S. W. (2007). Spatial scaling methods for landscape and regional ecosystem analysis. Forest Ecosystems (Third edition), Analysis at Multiple Scales, 225-259.
  • Wierenga, P. J., Nielsen, D. R., Horton, R., & Kies, B. (1982). Tillage effects on soil temperature and thermal conductivity. Predicting tillage effects on soil physical properties and processes, 44, 69-90.
  • Wu, W., Tang, X. P., Ma, X. Q., & Liu, H. B. (2016). A comparison of spatial interpolation methods for soil temperature over a complex topographical region. Theoretical and Applied Climatology, 125, 657-667.
  • Yan, L., & Hangwen, X. (2014). Effects of soil temperature, flooding and organic matter addition in N2O emissions from a soil of Hongze lake wetland. China. Journal of Applied Soil Ecology, 29, 173-183.
  • Yener, D., Ozgener, O., & Ozgener, L. (2017). Prediction of soil temperatures for shallow geothermal applications in Turkey. Renewable and Sustainable Energy Reviews, 70, 71-77.
  • Yenigün, K., Gümüş, V., Bulut H., (2008). Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers-Water Management. 161:4 189-198.
  • Yeşilırmak, E. (2014). Soil temperature trends in Büyük Menderes Basin, Turkey. Meteorological Applications, 21(4), 859-866.
  • Yildirim, G., & Rahman, A. (2022). Homogeneity and trend analysis of rainfall and droughts over Southeast Australia. Natural Hazards, 112(2), 1657-1683.
  • Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J.,Pan, Y., Wang, Z., Peng, R. (2020). The change characteristics and interactions of soil moisture and temperature in the farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5), 503.

Türkiye’de Yüzey Toprak Sıcaklıklarının Trend Analizi ve Mekansâl Dağılımı

Year 2025, Volume: 12 Issue: 2, 342 - 357, 16.04.2025
https://doi.org/10.30910/turkjans.1598495

Abstract

Toprak sıcaklığı, topraktaki fiziksel, kimyasal ve biyolojik olaylara etki eden önemli bir faktördür. Özellikle biyokimyasal aktivitelerin hızı ve toprak-bitki-su dengesi toprak sıcaklığının etkisi altındadır. Ancak günümüzde toprak sıcaklığı hakkında yapılan çalışmalar oldukça sınırlıdır. Toprak sıcaklığı ve bu sıcaklığın zamana bağlı olan değişimleri hakkında yeterli bilgiye sahip olmak ekosistem ve tarımsal üretim için oldukça önemlidir. Bu çalışmada, Türkiye'deki 73 iklim istasyonu kullanılarak 1981 ile 2021 yılları arasındaki dönemde toprak sıcaklığı eğilimleri aylık ölçekte 5 ve 20 cm derinliklerde analiz edilmiştir. Bununla birlikte aynı döneme ait hava ve toprak sıcaklığı arasındaki ilişkiler belirlenmeye çalışılmıştır. Araştırma sonuçları hava ve toprak sıcaklığı arasında yüksek korelasyonun olduğunu göstermiştir. Toprak sıcaklığının aylık eğilim analizleri sonuçlarına göre her iki toprak derinliğinde pozitif trendlerin fazla olduğu belirlenmiştir. 5 cm ve 20 cm derinlikler için, önemli pozitif trend dağılımı en fazla Mart (sırasıyla %78.08 ve %83.56) ayında önemli negatif trend dağılımı ise sırasıyla en fazla Haziran (% 9.59) ve Temmuz (% 4.11) aylarında belirlenmiştir. Artan toprak sıcaklıkları toprakların birçok özelliğini etkilediği gibi tarımsal üretim süreçlerini de etkilemesi muhtemeldir. Toprak sıcaklıklarının artışını azaltacak başta toprak işleme gibi sürdürülebilir toprak yönetim uygulamalarının planlanması bir zorunluluk haline gelmiştir. Bundan dolayı toprak sıcaklığının artışına neden olabilecek faaliyetler kontrol altına alınarak izlenilmelidir.

References

  • Al-Kayssi, A. W., Al-Karaghouli, A. A., Hasson, A. M., & Beker, S. A. (1990). Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. Journal of Agricultural Engineering Research, 45, 241-252.
  • Araghi, A., Mousavi-Baygi, M., & Adamowski, J. (2017). Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil and Tillage Research, 174, 177-192.
  • Atalay, İ., (2011). Türkiye Geography and Geopolitics. 8. Baskı, Meta Basım Matbaacılık Hizmetleri.
  • Awe, G.O., Reichert, J.M., Wendroth, O.O., (2015). Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil Tillage Research 150: 93-106. https:// doi.org/10.1016/j.still.2015.01.013
  • Aydın, G., Çullu, M., Erşahin, S., Erdoğan, E., Atanır, L., Yorulmaz, A., Çilek, A., Ersoy, M., Miavaghi, S., Kapur, S. (2016). “Turkey: Mapping Soil Carbon Stock”. Encyclopedia of Soil Science, Third Edition. Taylor & Francis. DOI: 10.1081/E-ESS3-120052900
  • Biberdzic, M., Barac, S., Lalevic, D., Djikic, A., Prodanovic, D., & Rajicic, V. (2020). Influence of soil tillage system on soil compaction and winter wheat yield. Chilean journal of agricultural research, 80(1), 80-89.
  • Blanco‐Canqui, H., & Ruis, S. J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5), 1527-1576.
  • Bolat, İ., (2023). Relationships between air temperature and soil temperature at different depths: The case of Bartın
  • Bollero, G. A., Bullock, D. G., & Hollinger, S. E. (1996). Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agronomy Journal, 88(3), 385-390.
  • Bordonal, R.O.; Menandro, L.M.S.; Barbosa, L.C.; Lal, R.; Milori, D.M.B.P.; Kolln, O.T.; Franco, H.C.J.; Carvalho, J.L.N. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma 328: 79-90. https://doi.org/10.1016/j.Geoderma.2018.05.003
  • Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248-260.
  • Burn, D.H. ve Elnur, M.A.H. (2002). Detection of Hydrologic Trends and Variability, Journal of Hydrology, 255, 107-122.
  • Caloiero, T. (2015). Analysis of rainfall trend in New Zealand. Environmental Earth Sciences, 73, 6297-6310. Castioni, G.A.; Cherubin, M.R.; Menandro, L.M.S.; Sanches, G.M.; Bordonal, R.O.; Barbosa, L.C.; Franco, H.C.J.; Carvalho, J.L.N. (2018). Soil physical quality response to sugarcane straw removal in Brazil: a multi-approach assessment. Soil Tillage Research 184: 301-309. https://doi. org/10.1016/j.still.2018.08.007
  • Cheng L, Zhang N, Yuan M, Xiao J, Qin Y, Deng Y, Tu Q, Xue K, Van Nostrand JD, Wu L, He Z, Zhou X, Leigh MB, Konstantinidis KT, Schuur EAG, Luo Y, Tiedje JM, Zhou J (2017) Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J 11:1825– 1835.
  • Cherubin, M. R., Bordonal, R. O., Castioni, G. A., Guimaraes, E. M., Lisboa, I. P., Moraes, L. A., ... & Carvalho, J. L. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163, 113315.
  • Cherubin, M.R. (2019). Lisboa, I.P.; Silva, A.G.B.; Varanda, L.L.; Bordonal, R.O.; Carvalho, J.L.N.; Otto, R.; Pavinato, P.S.; Soltangheisi, A.; Cerri, C.E.P. Sugarcane straw removal: implications to soil fertility and fertilizer demand in Brazil. Bioenergy Research 12: 888-900.
  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M.Z., Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in agronomy, 166, 131-196.
  • Chudinova, S. M., Frauenfeld, O. W., Barry, R. G., Zhang, T., & Sorokovikov, V. A. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. Journal of Geophysical Research: Earth Surface, 111(F2).
  • Demir, Y., & Mirici, M. (2020). Effect of land use and topographic factors on soil organic carbon content and mapping of organic carbon distribution using regression kriging method. Carpathian Journal of Earth and Environmental Sciences, 15(2), 311-322.
  • Demir, Y., Doğan Demir, A., (2023). Changes in Some Soil Quality Due to Global Climate, Chapter 5. Envıronmental Compulsion and Agrıculture. İksad Publications Press. P. 121-142
  • Derpsch, R., Franzluebbers, A. J., Duiker, S. W., Reicosky, D. C., Koeller, K., Friedrich, T., … Weiss, K. (2014). Why do we need to standardize no tillage research? Soil & Tillage Research, 137, 16–22. https://doi.org/ 10.1016/j.still.2013.10.002
  • Dinç, U. Şenol, S. 1998. Soil Survey and Mapping. Univ. of Çukurova, Faculty of Agriculture Pub No. A-50. Adana.
  • Doğan Demir, A., Demir, Y.(2016). Mean, Minumum and Maximum Temperature Trends in Bingol. Middle East Journal of Science, 2(2), 101-109.
  • Doğan Demir, A., Demir, Y., Şahin U., Meral, R., (2017). Trend Analyses of Temperature and Precipitation and Effect on Agricultural in Bingol Province. Turkısh Journal of Agrıcultural and Natural Sciences, 4 (3), 284-291.
  • Dorau, K., Bamminger, C., Koch, D., & Mansfeldt, T. (2022). Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany. Climatic Change, 170(1-2), 9.
  • Ekberli, İ., & Sarılar, Y. (2015). Determination of Damping Depth and Retardation Time of Soil Temperature Along Soil Profile. Journal of Agriculture Faculty of Ege University, 52(2), 219-227.
  • Ekberli, İ., Gülser, C., & Özdemir, N. (2017). Using parabolic function in prediction of temperature at different soil depths. Journal of Soil Science and Plant Nutrition, 5(1), 34-38.
  • Elias, E. H., Flynn, R., Idowu, O. J., Reyes, J., Sanogo, S., Schutte, B. J., Sutherland, C. (2019). Crop vulnerability to weather and climate risk: Analysis of interacting systems and adaptation efficacy for sustainable crop production. Sustainability, 11(23), 6619.
  • Elibüyük, M., & Yılmaz, E. (2010). Altitude Steps and Slope Groups of Turkey In Comparison with Geographical Regions and Sub-Regions. Turkish Journal of Geographical Sciences, 8(1), 27-56.
  • Elizaberashivili ES, Urashadze TF, Elizaberashivili ME, et al. Temperature regime of some soil types in Georgia. Eurasian soil science. 2010;43(4):427–435.
  • Fang, C., Smith, P., Moncrieff, J. B., Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433(7021), 57-59.
  • Fang, X., Luo, S., Lyu, S. (2019). Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theoretical and applied climatology, 135, 169-181.
  • Fowler, D. B., Limin, A. E., Ritchie, J. T. (1999). Low‐temperature tolerance in cereals: model and genetic interpretation. Crop Science, 39(3), 626-633.
  • Gao, H., & Shao, M. (2015). Effects of temperature changes on soil hydraulic properties. Soil and Tillage Research, 153, 145-154.
  • George R. K., 2001. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Analysis: Theory, Methods ve Applications, 7, 1737-178.
  • Gilbert RO (1987). Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold.)
  • Grant, S. A., & Bachmann, J. (2002). Effect of temperature on capillary pressure. Geophysical Monograph-American Geophysical Union, 129, 199-212.
  • Guleryuz, D. (2022). Estimation of soil temperatures with machine learning algorithms—Giresun and Bayburt stations in Turkey. Theoretical and Applied Climatology, 147(1), 109-125.
  • Gülser, C., Ekberli, I., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Sciences, 4(3): 418‐423.
  • Haruna, S. I., Anderson, S. H., Udawatta, R. P., Gantzer, C. J., Phillips, N. C., Cui, S., & Gao, Y. (2020). Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment, 3(1), e20105.
  • Hatfield, J. L., Perrier, A., & Jackson, R. D. (1983). Estimation of evapotranspiration at one time-of-day using remotely sensed surface temperatures. In Developments in agricultural and managed forest ecology (Vol. 12, pp. 341-350). Elsevier.
  • He, H., Dyck, M. F., Horton, R., Li, M., Jin, H., & Si, B. (2018). Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method. Advances in agronomy, 148, 173-230.
  • Hillel, D., 1998. Environmental Soil Physics. Academic Press, New York, 771 pp.
  • Hodam, S., Sarkar, S., Marak, A. G. R., Bandyopadhyay, A., & Bhadra, A. (2017). Spatial Interpolation of Reference Evapotranspiration in India: Comparison of IDW and Kriging Methods. Journal of The Institution of Engineers (India): Series A, 98(4), 511–524. https://doi.org/10.1007/s40030-017-0241-z
  • Isaaks, E. H., & Srivastava, R. . (1989). An introduction to applied geo-statistics. Oxford University Press. Jahromi, K. F., Sabziparvar, A. A., & Mahmoudvand, R. (2021). Spectral analysis of soil temperature and their coincidence with air temperature in Iran. Environmental monitoring and assessment, 193(2), 72.
  • Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 37-49.
  • Johnson, J.M.F.; Strock, J.S.; Tallaksen, J.E.; Reese, M. 2016. Corn stover harvest changes soil hydrology and soil aggregation. Soil Tillage Research 161: 106-115.
  • Kantarcı, M. D., 2000. Soil Science. Istanbul University Forestry Faculty Publications, No 4261/462, 2. Press, ISBN: ISBN: 975-404-588-7, İstanbul, 420 s.
  • Kapur, S., Akça, E., & Günal, H. (Eds.). (2017). The soils of Turkey. Springer.
  • Kara, F., & Cemek, B. (2019). Estimation of soil temperatures by using artificial neural networks for the provinces of Middle Black Sea Region. Derim, 36(2), 192-198.
  • Kerridge, B., Hornbuckle, J. W., Christen, E. W., & Faulkner, R. D. (2008). Soil spatial variability effects on irrigation efficiency. In Irrigation Australia Conference.'Melbourne, May (pp. 20-22).
  • Khambhammettu, P. (2005). Mann-Kendall analysis for the Fort Ord site. USACE, HydroGeoLogic, Inc., Memorandum http://www. fortordcleanup. com/ar_pdfs/AR-OU1-520C/Appendices/Appendix% 20D. pdf [last seen: February 2011].
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627.
  • Licht, M. A., & Al-Kaisi, M. (2005). Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage research, 80(1-2), 233-249.
  • Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., ... & Dong, Q. (2021). Tillage effects on soil properties and crop yield after land reclamation. Scientific Reports, 11(1), 4611.
  • Martias AD, Musil S. Temperature and thermal diffusivity within a range land soil near Oracle, Arizona. Journal of the Arizona–Nevada Academy of science. 2012;44(1):15–21
  • Martinez, D. C. M., & Narducci, M. S. (2020). Spatial variation prediction and mapping of soil temperature. In 2020 Virtual Symposium in Plant Omics Sciences (OMICAS) (pp. 1-6). IEEE.
  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
  • MGM., (2022). Meteoroloji Genel Müdürlüğü, İklim sınıflandırmaları. Erişim adresi: http://www. mgm. gov. tr/FILES/iklim/iklim_ siniflandirmalari. pdf. (in Turkish)
  • Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494-502.
  • Ochsnor TE, Horton R, Ren T. A new perspective on soil thermal properties. Soil science society of American journal. 2001;65(6):1641–1647.
  • Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res, 8(1), 34-37.
  • Paredes, F.P.; Portilho, I.I.R.; Mercante, F.M. 2015. Microbiological attributes of the soil under cultivation of sugar cane with and without burning straw. Semina. Ciências Agrárias 36: 151-164 (in Portuguese, with abstract in English). province, Türkiye. Anatolian Journal of Forest Research, 9(2), 144-149.
  • Qiu, G. Y., & Ben-Asher, J. (2010). Experimental determination of soil evaporation stages with soil surface temperature. Soil Science Society of America Journal, 74(1), 13-22.
  • Reginato, R. J., Idso, S. B., Vedder, J. F., Jackson, R. D., Blanchard, M. B., & Goettelman, R. (1976). Soil water content and evaporation determined by thermal parameters obtained from ground‐based and remote measurements. Journal of Geophysical Research, 81(9), 1617-1620.
  • Repo, T., Leinonen, I., Ryyppö, A., & Finér, L. (2004). The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiologia Plantarum, 121(1), 93-100.
  • Saboohi, R., Soltani, S., Khodagholi, M., 2012. Trend analysis of temperature parameters in Iran. Theor. Appl. Climatol. 109, 529–547.
  • Sándor, R., & Fodor, N. (2012). Simulation of soil temperature dynamics with models using different concepts. The scientific world journal, 2012(1), 590287.
  • She, X., Wang, Y., Xu, H., Chi Edman Tsang, S., & Ping Lau, S. (2022). Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angewandte Chemie International Edition, 61(49), e202211396.
  • Song, Y., Zhou, D., Zhang, H., Li, G., Jin, Y., & Li, Q. (2013). Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58, 907-912.
  • Sönmez, B. (2011). Çorak Toprakların Islahı ve Yönetimi, Bilim ve Aklın Aydınlığında Eğitim (in Türkiye), Sayı, 134, S. 52-56.
  • Steinmaus, S. J., Prather, T. S., & Holt, J. S. (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51(343), 275-286.
  • Stone, P. J., Sorensen, I. B., & Jamieson, P. D. (1999). Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field crops research, 63(2), 169-178.
  • Thapa, R., Tully, K.L., Cabrera, M., Dann, C., Schomberg, H.H., Timlin, D., Gaskin, J., Reberg-Horton, C., Mirsky, S.B., (2021a). Cover crop residue moisture content controls diurnal variations in surface residue decomposition. Agric For Meteorol 308–309:108537. https://doi.org/10.1016/j.agrformet.2021.108537
  • Thapa, R., Tully, K.L., Cabrera, M.L., Dann, C., Schomberg, H.H., Timlin, D., Reberg-Horton, C., Gaskin, J., Davis, B.W,, Mirsky, S.B., (2021b). Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biol Fertil Soils 57:485–498. https://doi.org/10.1007/s00374-021-01543-7
  • Tonkaz, T., Doğan, E., & Aydemir, S. (2007). Spatial changes in soil temperatures in the GAP Region and their relationships with air temperature. Journal of Harran University Faculty of Agriculture , 11(1-2), 55-61.
  • Valim, W.C.; Panachuki, E.; Pavei, D.S.; Sobrinho, T.A.; Almeida, W.S. 2016. Effect of sugarcane waste in the control of interrill erosion. Semina. Ciências Agrárias 37: 1155-1164.
  • Veiga, M. D., Reinert, D. J., & Reichert, J. M. (2010). Tillage systems and nutrient sources affecting soil cover, temperature and moisture in a clayey Oxisol under corn. Revista Brasileira de Ciência do Solo, 34, 2011-2020.
  • Wang, S., Zhang, X., Adhikari, K., Roland, B., Zhuang, Q., Wang, Z., ... & Qian, F. (2023). Predicting soil organic carbon stocks under future land use and climate change conditions in Northeast China. Environmental Impact Assessment Review, 103, 107278.
  • Waring, R. H., & Running, S. W. (2007). Spatial scaling methods for landscape and regional ecosystem analysis. Forest Ecosystems (Third edition), Analysis at Multiple Scales, 225-259.
  • Wierenga, P. J., Nielsen, D. R., Horton, R., & Kies, B. (1982). Tillage effects on soil temperature and thermal conductivity. Predicting tillage effects on soil physical properties and processes, 44, 69-90.
  • Wu, W., Tang, X. P., Ma, X. Q., & Liu, H. B. (2016). A comparison of spatial interpolation methods for soil temperature over a complex topographical region. Theoretical and Applied Climatology, 125, 657-667.
  • Yan, L., & Hangwen, X. (2014). Effects of soil temperature, flooding and organic matter addition in N2O emissions from a soil of Hongze lake wetland. China. Journal of Applied Soil Ecology, 29, 173-183.
  • Yener, D., Ozgener, O., & Ozgener, L. (2017). Prediction of soil temperatures for shallow geothermal applications in Turkey. Renewable and Sustainable Energy Reviews, 70, 71-77.
  • Yenigün, K., Gümüş, V., Bulut H., (2008). Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers-Water Management. 161:4 189-198.
  • Yeşilırmak, E. (2014). Soil temperature trends in Büyük Menderes Basin, Turkey. Meteorological Applications, 21(4), 859-866.
  • Yildirim, G., & Rahman, A. (2022). Homogeneity and trend analysis of rainfall and droughts over Southeast Australia. Natural Hazards, 112(2), 1657-1683.
  • Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J.,Pan, Y., Wang, Z., Peng, R. (2020). The change characteristics and interactions of soil moisture and temperature in the farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5), 503.
There are 88 citations in total.

Details

Primary Language English
Subjects Soil Survey and Mapping, Soil Physics
Journal Section Research Article
Authors

Yasin Demir 0000-0002-0117-8471

Azize Doğan Demir 0000-0003-2008-3408

Mehmet Zahid Malaslı 0000-0002-5845-1272

Publication Date April 16, 2025
Submission Date December 9, 2024
Acceptance Date February 12, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Demir, Y., Doğan Demir, A., & Malaslı, M. Z. (2025). Trend Analysis and Spatial Distribution of Surface Soil Temperatures in Türkiye. Turkish Journal of Agricultural and Natural Sciences, 12(2), 342-357. https://doi.org/10.30910/turkjans.1598495