Research Article
BibTex RIS Cite

Çörek otu (Nigella sativa L.) bitkisinde sodyum azid uygulamasının optimizasyonu ve M1 generasyonunda tarımsal özelliklerin belirlenmesi

Year 2025, Volume: 12 Issue: 3, 753 - 763, 23.07.2025
https://doi.org/10.30910/turkjans.1573820

Abstract

Bu çalışma, çörek otu tohumlarının klasik ıslah yöntemleriyle yeni çeşitlerin geliştirilmesi potansiyelini artırmak için ilk adımı oluşturmaktadır. Bu amaçla, M1 tohumlarını üretmek için bir kimyasal mutajen olan sodyum azidin uygulanma koşulları optimize edilmiştir. Bu optimizasyonu sağlamak için, tohumlara farklı konsantrasyonlarda (1, 2, 3 ve 4 mM) ve sürelerde (1, 2, 3 ve 4 saat) sodyum azid mutajeni uygulanmış ve çimlenme parametreleri üzerindeki etkisi değerlendirilmiştir. Mutant ve kontrol gruplarından tek bitki seçimlerini içeren bir tarla çalışması da, M1 neslindeki bitkilerin tarımsal özelliklerini değerlendirmek için gerçekleştirilmiştir. Sonuçlar, sodyum azid konsantrasyonu arttıkça çimlenme oranı, çimlenme oranı katsayısı, çimlenme oranı indeksi ve çimlenme canlılık indeksinin azaldığını; ortalama çimlenme süresinin ise arttığını ortaya koymuştur. Dozdaki farklılıkların tüm çimlenme parametrelerinde önemli etkileri olduğu saptanmıştır. Çimlenme oranı kontrol grubunda %85.6 iken, artan dozlarla %38.0'a düşmüştür. Tarla performansı açısından M1 bitkilerinin mutant ve kontrol grupları arasında bitki boyu, ilk dal yüksekliği, ilk kapsül yüksekliği, kapsül çapı ve 1000-tane ağırlığı açısından önemli farklılıklar tespit edilmiştir. Ancak, dal sayısı, bitki başına kapsül sayısı, kapsüldeki tohum sayısı veya bitki başına verim açısından önemli bir farklılık bulunmamıştır. Sonuç olarak, tohumlara 3 mM x 2 saatlik bir sodyum azid uygulaması, çörek otu bitkilerinde mutagenez yoluyla genetik varyasyonun indüklenmesinde etkili olmuş ve çörek otunun iyileştirilmesinde potansiyelini ortaya koymuştur.

References

  • Ahmad, S., Abbasi, H. W., Shahid, S., Gul, S., & Abbasi, S. W. (2021). Molecular docking, simulation and MM-PBSA studies of (Nigella sativa L.) compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics 39(12): 4225-4233.
  • Ananthaswamy, H. N., Vakil, U. K., & Sreenivasan, A. (1971). Biochemical and physiological changes in gamma-irradiated wheat during germination. Radiation Botany 11(1): 1-12.
  • Aurabi, A. K., Ibrahim, K. M., & Yousif, S. A. (2012). Induction of genetic variation for drought tolerance in two rice cultivars Amber 33 and Amber Baghdad. Iraqi Journal of Biotechnology 11(2): 270-281.
  • Basurra, R. S., Wang, S. M., & Alhoot, M. A. (2021). Nigella sativa (Black Seed) as a natural remedy against viruses. Journal of Pure and Applied Microbiology 15(1): 29-41.
  • Benazzouz-Smail, L., Achat, S., Brahmi, F., Bachir-Bey, M., Arab, R., Lorenzo, J. M., & Madani, K. (2023). Biological properties, phenolic profile, and botanical aspect of (Nigella sativa L. and Nigella damascena L.) seeds: A comparative study. Molecules 28(2): 571.
  • Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwartz, A., Joel, D. M., & Lewinsohn, E. (2012). Distribution of primary and specialized metabolites in (Nigella sativa L.) seeds, a spice with vast traditional and historical uses. Molecules 17(9): 10159-10177.
  • Butt, A. S., Nisar, N., Ghani, N., Altaf, I., & Mughal, T. A. (2019). Isolation of thymoquinone from (Nigella sativa L. and Thymus vulgaris L.) and its anti-proliferative effect on Hela cancer cell lines. Tropical Journal of Pharmaceutical Research 18(1): 37-42.
  • Cheng, X., & Gao, M. (1988). Biological and genetic effects of combined treatments of sodium azide, gamma rays, and EMS in barley. Environmental and Experimental Botany 28(4): 281-288.
  • Datta, A. K., Biswas, A. K., & Sen, S. (1986). Gamma radiation sensitivity in Nigella sativa L. Cytologia 51(3): 609-615.
  • Datta, A. K., Saha, A., Bhattacharya, A., Mandal, A., Paul, R., & Sengupta, S. (2012). Black cumin (Nigella sativa L.): A review. Journal of Plant Development Sciences 4(1): 1-43.
  • Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science 6: 36-40.
  • Emrani, S. N., Arzani, A. & Saeidi, G. (2011). Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. African Journal of Biotechnology, 10 (59): 12602-12613
  • Eze, J. J., & Dambo, A. (2015). Mutagenic effects of sodium azide on the quality of maize seeds. Journal of Advanced Laboratory Research in Biology 6(3): 76-82.
  • Gasong, B. T., Hartanti, A. W., & Tjandrawinata, R. R. (2017). Antibacterial activity of (Nigella sativa L.) seed oil in water emulsion against dental cariogenic bacteria. International Journal of Pharmaceutical Sciences and Research 8(7): 8.
  • Genç, H., & Özar, A. İ. (1986). Preliminary investigations on the mites found on stored products in Izmir. Türkiye Bitki Koruma Dergisi 10(3): 175-183.
  • Gholamnezhad, Z., Shakeri, F., Saadat, S., Ghorani, V., & Boskabady, M. H. (2019). Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna Journal of Phytomedicine 9(3): 195.
  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2012). Sodium azide as a mutagen. In Plant mutation breeding and biotechnology (pp. 159-166). Wallingford UK: CABI.
  • Hossain, M. S., Sharfaraz, A., Dutta, A., Ahsan, A., Masud, M. A., Ahmed, I. A., & Ming, L. C. (2021). A review of ethnobotany, phytochemistry, antimicrobial pharmacology, and toxicology of (Nigella sativa L.). Biomedicine and Pharmacotherapy 143: 112182.
  • Iqbal, M. J., Butt, M. S., Qayyum, M. M. N., & Suleria, H. A. R. (2017). Anti-hypercholesterolemic and anti-hyperglycaemic effects of conventional and supercritical extracts of black cumin (Nigella sativa L.). Asian Pacific Journal of Tropical Biomedicine 7(11): 1014-1022.
  • Ilbas, A. I., Eroglu, Y., & Eroglu, H. E. (2005). Effects of the application of different concentrations of NaN3 for different times on the morphological and cytogenetic characteristics of barley (Hordeum vulgare L.) seedlings. Journal of Integrative Plant Biology 47(9): 1101-1106.
  • Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., & Last, R. L. (2003). Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiology 131: 139-146.
  • Khan, S., & Goyal, S. (2009). Improvement of mungbean varieties through induced mutations. African Journal of Plant Science 3(8): 174-180.
  • Khan, S., Wani, M. R., & Parveen, K. (2004). Induced genetic variability for quantitative traits in (Vigna radiata L.) Wilczek. Pakistan Journal of Botany 36(4): 845-850.
  • Kleinhofs, W., & Sander, C. (1975). Azide mutagenesis in barley. In Proceedings of the 3rd International Barley Genetics Symposium (pp. 7-12).
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.
  • Klute, A. (1986). Water retention: laboratory methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 635-662.
  • Melnyk, H. I., Stalyus, L. V., & Kozak, T. I. (2015). The perspectives of (Nigella sativa L.) growing in the climatic conditions of the Precarpathian Region. The Pharma Innovation 4(3): 24.
  • Mensah, J. K., & Obadoni, B. (2007). Effects of sodium azide on yield parameters of groundnut (Arachis hypogaea L.). African Journal of Biotechnology 6(6).
  • Mostafa, G. G. (2011). Effect of Sodium azide on the growth and variability induction in. International Journal of Plant Breeding and Genetics 5: 76-85.
  • Noor, N. A., Ezz, H. S. A., Faraag, A. R., & Khadrawy, Y. A. (2012). Evaluation of the antiepileptic effect of curcumin and Nigella sativa oil in the pilocarpine model of epilepsy in comparison with valproate. Epilepsy and Behavior 24(2): 199-206.
  • Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment 30(1): 1-16.
  • Paarakh, P. M. (2010). Nigella sativa Linn. A comprehensive review. Indian Journal of Natural Products and Resources 1(4): 409-429.
  • Prabha, R., Dixit, V., & Chaudhary, B. R. (2010). Sodium azide-induced mutagenesis in fenugreek (Trigonella foenum-graecum L.). Legume Research: An International Journal 33(4): 235-241.
  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022). Gamma rays and sodium azide induced genetic variability in high-yielding and biofortified mutant lines in cowpea (Vigna unguiculata L.) Walp. Frontiers in Plant Science 13.
  • Rani, R., Dahiya, S., Dhingra, D., Dilbaghi, N., Kim, K. H., & Kumar, S. (2018). Improvement of antihyperglycemic activity of nano thymoquinone in a rat model of type-2 diabetes. Chemico-Biological Interactions 295: 119-132.
  • Shahbazi, E., Safipor, B., & Golkar, P. (2022). Responses of Nigella damascena L. and Nigella sativa L. to drought stress: Yield, fatty acid composition, and antioxidant activity. Journal of Agricultural Science and Technology 24(3): 693-705.
  • Sommer, A. P., Försterling, H. D., & Sommer, K. E. (2021). Tutankhamun’s antimalarial drug for COVID-19. Drug Research 71(1): 4-9.
  • Srinivasan, K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa L.) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety 2(1): 1-16.
  • Ürüşan, Z. (2016). Bazı çörek otu (Nigella sativa L., Nigella damascena) genotiplerinde tarımsal ve kalite özelliklerinin belirlenmesi. Atatürk University. The Institute of Natural Sciences, Erzurum, Turkey
  • Vinithashri, G., Manonmani, S., Anand, G., Meena, S., Bhuvaneswari, K., & JohnJoel, A. (2020). Mutagenic effectiveness and efficiency of sodium azide in rice varieties. Electronic Journal of Plant Breeding 11(1): 197-203.
  • Yıldız, G. (2016). Farklı sıra aralığı ve azot dozlarının çörek otunun (Nigella sativa L.) verim ve verim unsurları üzerine etkileri. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Zhang, B. H. (2000). Regulation of plant growth regulators on cotton somatic embryogenesis and plant regeneration. Biochemistry 39: 1567.

Optimization of Sodium Azide Application in Black Cumin (Nigella sativa L.) and Determination of Agronomic Characteristics in M1 Generation

Year 2025, Volume: 12 Issue: 3, 753 - 763, 23.07.2025
https://doi.org/10.30910/turkjans.1573820

Abstract

This research represents the first step in enhancing the potential of black cumin seeds for developing new varieties through classical breeding methods. For this purpose, the application conditions of sodium azide, a chemical mutagen, were optimized to produce M1 seeds. To achieve this optimization, we applied sodium azide mutagen to seeds at various concentrations (1, 2, 3, and 4 mM) and durations (1, 2, 3, and 4 hours) and assessed its impact on germination parameters. A field study involving single plant selections from the mutant and control groups was also conducted to evaluate the agricultural characteristics of plants in the M1 generation. The results revealed that as the concentration of sodium azide increased, the germination rate, germination rate coefficient, germination rate index, and germination vigor index decreased, while the average germination time increased. The differences in dose significantly affected all variations in germination parameters. The germination rate decreased from 85.6% in the control group to 38.0% with increasing doses. In terms of field performance, significant differences in plant height, first branch height, first capsule height, capsule diameter, and 1000-seed weight were detected between the mutant and control groups of M1 plants. However, there were no significant differences in the number of branches, capsules per plant, number of seeds in the capsule, or yield per plant. In conclusion, a 3 mM x 2 hour application of sodium azide to seeds effectively induced genetic variation in black cumin, demonstrating its potential for improving black cumin through mutagenesis.

References

  • Ahmad, S., Abbasi, H. W., Shahid, S., Gul, S., & Abbasi, S. W. (2021). Molecular docking, simulation and MM-PBSA studies of (Nigella sativa L.) compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics 39(12): 4225-4233.
  • Ananthaswamy, H. N., Vakil, U. K., & Sreenivasan, A. (1971). Biochemical and physiological changes in gamma-irradiated wheat during germination. Radiation Botany 11(1): 1-12.
  • Aurabi, A. K., Ibrahim, K. M., & Yousif, S. A. (2012). Induction of genetic variation for drought tolerance in two rice cultivars Amber 33 and Amber Baghdad. Iraqi Journal of Biotechnology 11(2): 270-281.
  • Basurra, R. S., Wang, S. M., & Alhoot, M. A. (2021). Nigella sativa (Black Seed) as a natural remedy against viruses. Journal of Pure and Applied Microbiology 15(1): 29-41.
  • Benazzouz-Smail, L., Achat, S., Brahmi, F., Bachir-Bey, M., Arab, R., Lorenzo, J. M., & Madani, K. (2023). Biological properties, phenolic profile, and botanical aspect of (Nigella sativa L. and Nigella damascena L.) seeds: A comparative study. Molecules 28(2): 571.
  • Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwartz, A., Joel, D. M., & Lewinsohn, E. (2012). Distribution of primary and specialized metabolites in (Nigella sativa L.) seeds, a spice with vast traditional and historical uses. Molecules 17(9): 10159-10177.
  • Butt, A. S., Nisar, N., Ghani, N., Altaf, I., & Mughal, T. A. (2019). Isolation of thymoquinone from (Nigella sativa L. and Thymus vulgaris L.) and its anti-proliferative effect on Hela cancer cell lines. Tropical Journal of Pharmaceutical Research 18(1): 37-42.
  • Cheng, X., & Gao, M. (1988). Biological and genetic effects of combined treatments of sodium azide, gamma rays, and EMS in barley. Environmental and Experimental Botany 28(4): 281-288.
  • Datta, A. K., Biswas, A. K., & Sen, S. (1986). Gamma radiation sensitivity in Nigella sativa L. Cytologia 51(3): 609-615.
  • Datta, A. K., Saha, A., Bhattacharya, A., Mandal, A., Paul, R., & Sengupta, S. (2012). Black cumin (Nigella sativa L.): A review. Journal of Plant Development Sciences 4(1): 1-43.
  • Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science 6: 36-40.
  • Emrani, S. N., Arzani, A. & Saeidi, G. (2011). Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. African Journal of Biotechnology, 10 (59): 12602-12613
  • Eze, J. J., & Dambo, A. (2015). Mutagenic effects of sodium azide on the quality of maize seeds. Journal of Advanced Laboratory Research in Biology 6(3): 76-82.
  • Gasong, B. T., Hartanti, A. W., & Tjandrawinata, R. R. (2017). Antibacterial activity of (Nigella sativa L.) seed oil in water emulsion against dental cariogenic bacteria. International Journal of Pharmaceutical Sciences and Research 8(7): 8.
  • Genç, H., & Özar, A. İ. (1986). Preliminary investigations on the mites found on stored products in Izmir. Türkiye Bitki Koruma Dergisi 10(3): 175-183.
  • Gholamnezhad, Z., Shakeri, F., Saadat, S., Ghorani, V., & Boskabady, M. H. (2019). Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna Journal of Phytomedicine 9(3): 195.
  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2012). Sodium azide as a mutagen. In Plant mutation breeding and biotechnology (pp. 159-166). Wallingford UK: CABI.
  • Hossain, M. S., Sharfaraz, A., Dutta, A., Ahsan, A., Masud, M. A., Ahmed, I. A., & Ming, L. C. (2021). A review of ethnobotany, phytochemistry, antimicrobial pharmacology, and toxicology of (Nigella sativa L.). Biomedicine and Pharmacotherapy 143: 112182.
  • Iqbal, M. J., Butt, M. S., Qayyum, M. M. N., & Suleria, H. A. R. (2017). Anti-hypercholesterolemic and anti-hyperglycaemic effects of conventional and supercritical extracts of black cumin (Nigella sativa L.). Asian Pacific Journal of Tropical Biomedicine 7(11): 1014-1022.
  • Ilbas, A. I., Eroglu, Y., & Eroglu, H. E. (2005). Effects of the application of different concentrations of NaN3 for different times on the morphological and cytogenetic characteristics of barley (Hordeum vulgare L.) seedlings. Journal of Integrative Plant Biology 47(9): 1101-1106.
  • Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., & Last, R. L. (2003). Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiology 131: 139-146.
  • Khan, S., & Goyal, S. (2009). Improvement of mungbean varieties through induced mutations. African Journal of Plant Science 3(8): 174-180.
  • Khan, S., Wani, M. R., & Parveen, K. (2004). Induced genetic variability for quantitative traits in (Vigna radiata L.) Wilczek. Pakistan Journal of Botany 36(4): 845-850.
  • Kleinhofs, W., & Sander, C. (1975). Azide mutagenesis in barley. In Proceedings of the 3rd International Barley Genetics Symposium (pp. 7-12).
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.
  • Klute, A. (1986). Water retention: laboratory methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 635-662.
  • Melnyk, H. I., Stalyus, L. V., & Kozak, T. I. (2015). The perspectives of (Nigella sativa L.) growing in the climatic conditions of the Precarpathian Region. The Pharma Innovation 4(3): 24.
  • Mensah, J. K., & Obadoni, B. (2007). Effects of sodium azide on yield parameters of groundnut (Arachis hypogaea L.). African Journal of Biotechnology 6(6).
  • Mostafa, G. G. (2011). Effect of Sodium azide on the growth and variability induction in. International Journal of Plant Breeding and Genetics 5: 76-85.
  • Noor, N. A., Ezz, H. S. A., Faraag, A. R., & Khadrawy, Y. A. (2012). Evaluation of the antiepileptic effect of curcumin and Nigella sativa oil in the pilocarpine model of epilepsy in comparison with valproate. Epilepsy and Behavior 24(2): 199-206.
  • Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment 30(1): 1-16.
  • Paarakh, P. M. (2010). Nigella sativa Linn. A comprehensive review. Indian Journal of Natural Products and Resources 1(4): 409-429.
  • Prabha, R., Dixit, V., & Chaudhary, B. R. (2010). Sodium azide-induced mutagenesis in fenugreek (Trigonella foenum-graecum L.). Legume Research: An International Journal 33(4): 235-241.
  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022). Gamma rays and sodium azide induced genetic variability in high-yielding and biofortified mutant lines in cowpea (Vigna unguiculata L.) Walp. Frontiers in Plant Science 13.
  • Rani, R., Dahiya, S., Dhingra, D., Dilbaghi, N., Kim, K. H., & Kumar, S. (2018). Improvement of antihyperglycemic activity of nano thymoquinone in a rat model of type-2 diabetes. Chemico-Biological Interactions 295: 119-132.
  • Shahbazi, E., Safipor, B., & Golkar, P. (2022). Responses of Nigella damascena L. and Nigella sativa L. to drought stress: Yield, fatty acid composition, and antioxidant activity. Journal of Agricultural Science and Technology 24(3): 693-705.
  • Sommer, A. P., Försterling, H. D., & Sommer, K. E. (2021). Tutankhamun’s antimalarial drug for COVID-19. Drug Research 71(1): 4-9.
  • Srinivasan, K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa L.) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety 2(1): 1-16.
  • Ürüşan, Z. (2016). Bazı çörek otu (Nigella sativa L., Nigella damascena) genotiplerinde tarımsal ve kalite özelliklerinin belirlenmesi. Atatürk University. The Institute of Natural Sciences, Erzurum, Turkey
  • Vinithashri, G., Manonmani, S., Anand, G., Meena, S., Bhuvaneswari, K., & JohnJoel, A. (2020). Mutagenic effectiveness and efficiency of sodium azide in rice varieties. Electronic Journal of Plant Breeding 11(1): 197-203.
  • Yıldız, G. (2016). Farklı sıra aralığı ve azot dozlarının çörek otunun (Nigella sativa L.) verim ve verim unsurları üzerine etkileri. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Zhang, B. H. (2000). Regulation of plant growth regulators on cotton somatic embryogenesis and plant regeneration. Biochemistry 39: 1567.
There are 42 citations in total.

Details

Primary Language English
Subjects Crop and Pasture Breeding, Medicinal and Aromatic Plants
Journal Section Research Article
Authors

Hivrun Turanlı 0000-0001-9659-4816

Furkan Çoban 0000-0003-2815-8988

Kamil Haliloğlu 0000-0002-4014-491X

Publication Date July 23, 2025
Submission Date October 25, 2024
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Turanlı, H., Çoban, F., & Haliloğlu, K. (2025). Optimization of Sodium Azide Application in Black Cumin (Nigella sativa L.) and Determination of Agronomic Characteristics in M1 Generation. Turkish Journal of Agricultural and Natural Sciences, 12(3), 753-763. https://doi.org/10.30910/turkjans.1573820