Research Article
BibTex RIS Cite

Alleviation of Salt Stress Conditions in Some Mint Species Grown under Nanomaterials

Year 2025, Volume: 12 Issue: 4, 1186 - 1199, 17.10.2025
https://doi.org/10.30910/turkjans.1685730

Abstract

This study was conducted in 2022 at the greenhouse facility of Kilis 7 Aralık University, Mercidabık Campus, under controlled conditions using potted plants. The effects of salinity stress on the growth parameters of Mentha spicata L. and Mentha piperita L., and the potential mitigating effects of foliar-applied quercetin (QC), graphene oxide (GO), and nanoparticles (NP) were investigated.Seeds were sown in trays on March 15 and seedlings were transplanted into 3-liter pots at the four-leaf stage, with three plants per pot. Ten days post-transplantation, QC, GO, and NP were applied at concentrations of 0, 25, and 50 mg/L for three consecutive days. After 48 hours, salinity treatments (0, 50, and 100 mM NaCl) were initiated via soil irrigation with 200 ml of 50 mM NaCl solution every two days for one week, followed by adjusted salinity concentrations for an additional two weeks. The trial was carried out using a randomized block design with three replications.Growth parameters including plant height, branch number, fresh herb weight, fresh leaf weight, and dry leaf weight were measured. Data were subjected to one-way analysis of variance (ANOVA), and significant differences among treatments were determined using Duncan’s multiple range test at p < 0.05. Results are presented as means ± standard deviation. The highest plant height in M. spicata was recorded as 52.5 cm under 25 mg/L GO + 50 mM NaCl treatment, while the lowest was 30 cm under 25 mg/L QC + 100 mM NaCl. In M. piperita, the tallest plants (43.5 cm) were observed with 25 mg/L QC application, and the shortest (14.5 cm) in the control. Branch number increased under moderate salinity but decreased with high salinity combined with NP or GO applications. The highest fresh herb weight in M. spicata (21.36 g) was recorded with QC + 50 mM NaCl, and the lowest (4.24 g) with NP + 50 mM NaCl. In M. piperita, the highest fresh leaf weights (6.32 g) were found in NP treatment, with the lowest values (1.16 g) in the control group. Dry leaf weight was positively influenced by QC treatments in both species. These findings indicate that salinity stress adversely affects growth parameters in mint species; however, quercetin and certain nanomaterials may alleviate these effects. The application of nanomaterials and phytochemicals offers promising strategies to enhance mint productivity under saline conditions.

Project Number

Burcu OZTAŞ KURT’s MSc thesis (University of Kilis 7 Aralik, BAP Project-No:/22/LTP/002)

References

  • Abdoli, S., Ghassemi Golezani, K., & Alizadeh Salteh, S. (2020). Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research, 27(29), 36939- 36953. https://doi.org/10.1007/s11356-020-09453-1
  • Ahmad, B., Shabbir, A., Jaleel, H., Khan, M. M., & Sadiq, Y. (2018). Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Current Plant Biology, 13, 6–15. https://doi.org/10.1016/j.cpb.2018.04.002
  • Alabdallah, N. M., & Alzahrani, H. S. (2020). The potential mitigation effect of ZnO nanoparticles on Abelmoschus esculentus L. Moench metabolism under salt stress conditions. Saudi Journal of Biological Sciences, 27(11), 3132–3137. https://doi.org/10.1016/j.sjbs.2020.08.005.
  • Aliakbarpour, F., Vaziri, A., & Mohseni, M. (2020). Green synthesis of Au-Ag nanoparticles using Mentha piperita and effects of Au-Ag alloy nanoparticles on the growth of Mentha piperita under salinity stress. Journal of Plant Process and Function, 9(37), 47–57.
  • Anyaoku, J. C., Igwilo, I. O., & Ezekwesili, C. N. (2023). Phytomedicinal and nutritional values of Mentha piperita. International Journal of Research Publication and Reviews, 4, 3029–3037.
  • Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nanosilicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246. http://dx.doi.org/10.3390/agronomy9050246.
  • Aziz EA, Hendawi ST, Azza EED, Ömer EA. 2008a. Effect of soil type and irrigation intervals on plant growth, essential oil and constituents of Thymus vulgaris. Plant. American-Eurasian Journal of Agricultural & Environmental Sciences , 4(4), 443-450.
  • Aziz, E. E., Al-Amier, H., & Craker, L. E. (2008b). Influence of salinity stress on growth and essential oil production in peppermint, pennyroyal, and applemint. Journal of Herbs, Spices & Medicinal Plants, 14(3–4), 103–115. https://doi.org/10.1080/1049647080234137.
  • Baghalian, K., Haghiry, A., Naghavi, M. R., & Mohammadi, A. (2008). Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Horticulturae, 116(4), 437–441. https://doi.org/10.1016/j.scienta.2008.02.014.
  • Baydar, N. G., & Çoban, Ö. (2017). Tuz stresinin nane (Mentha piperita L.)’de büyüme ile uçucu yağ miktarı ve bileşenleri üzerine etkileri. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 757–762. https://doi.org/10.24925/turjaf.v5i7.757-762.1178
  • Baz, H., Creech, M., Chen, J., Gong, H., Bradford, K., & Huo, H. (2020). Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy, 10(8), 1192. https://doi.org/10.3390/agronomy10081192
  • Clark, R. J., & Menary, R. C. (2008). Environmental effects on peppermint (Mentha piperita L.) II. Effects of temperature on photosynthesis, photorespiration and dark respiration in peppermint with reference to oil composition. Australian Journal of Plant Physiology, 7(6), 693–697. https://doi.org/10.1071/PP9800693
  • Dolzhenko, Y., Bertea, C. M., Occhipinti, A., Bossi, S., & Maffei, M. E. (2010). UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha × piperita L.). Journal of Photochemistry and Photobiology B: Biology, 100(2), 67–75. https://doi.org/10.1016/j.jphotobiol.2010.05.003
  • El-Danasoury, M., Al-Amier, H., El-Din Helaly, A., Aziz, E. E., & Craker, L. (2010). Essential oil and enzyme activity in spearmint under salinity stress. Journal of Herbs, Spices & Medicinal Plants, 16(2), 136–145. https://doi.org/10.1080/10496475.2010.508975
  • El-Kinany, R. G., Brengi, S. H., Nassar, A. K., & El-Batal, A. (2019). Enhancement of plant growth, chemical composition and secondary metabolites of essential oil of salt-stressed coriander (Coriandrum sativum L.) using selenium, nano-selenium, and glycine betaine. Scientific Journal of Flowers and Ornamental Plants, 6(3), 151–173. https://doi.org/10.21608/SJFOP.2019.84973
  • Gohari, G., Farhadi, H., Panahirad, S., Zareei, E., Labib, P., Jafari, H., ... & Fotopoulos, V. (2023). Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. International Journal of Biological Macromolecules, 224, 893–907. https://doi.org/10.1016/j.ijbiomac.2022.10.175 Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO₂ NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 912.
  • Heshmati, A., Dolatian, M., Mojab, F., Nikkhah, S., & Mahmoodi, Z. (2016). The effect of peppermint (Mentha piperita) capsules on the severity of primary dysmenorrhea. Journal of Herbal Medicine, 6(3), 137-141. https://doi.org/10.1016/j.hermed.2016.05.001
  • Ioannou, A., Gohari, G., Papaphilippou, P., Panahirad, S., Akbari, A., Dadpour, M. R., & Fotopoulos, V. (2020). Advanced nanomaterials in agriculture under a changing climate: The way to the future? Environmental and Experimental Botany, 104048. https://doi.org/10.1016/j.envexpbot.2020.104048
  • Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80. https://doi.org/10.3389/fpls.2019.00080
  • Jahan, A., Khan, M. M. A., Ahmad, B., Ahmed, K. B. M., Sadiq, Y., & Gulfishan, M. (2023). Influence of titanium dioxide nanoparticles on growth, physiological attributes and essential oil production of Mentha arvensis L. Brazilian Journal of Botany, 1-13. https://doi.org/10.1007/s40415-023-00880-1
  • Keifer, D., Ulbricht, C., Abrams, T. R., Basch, E., Giese, N., Giles, M., ... & Woods, J. (2008). Peppermint (Mentha × piperita): An evidence-based systematic review by the Natural Standard Research Collaboration. Journal of Herbal Pharmacotherapy, 7(2), 91–143. https://doi.org/10.1080/J157v07n02_07
  • Khan, W. U. D., Tanveer, M., Shaukat, R., Ali, M., & Pirdad, F. (2020). An overview of salinity tolerance mechanism in plants. In Salt and drought stress tolerance in plants (pp. 1–16). https://doi.org/10.1007/978-3-030-40277-8_1
  • Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A. (2010). The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal, 11(11), 1403–1407.
  • Kiumarzi, F., Morshedloo, M. R., Zahedi, S. M., Mumivand, H., Behtash, F., Hano, C., ... & Lorenzo, J. M. (2022). Selenium nanoparticles (Se-NPs) alleviate salinity damages and improve phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants, 11(10), 1384.
  • Liu, B., Fan, L., Balakrishna, S., Sui, A., Morris, J. B., & Jordt, S. E. (2013). TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain, 154(10), 2169–2177. https://doi.org/10.1016/j.pain.2013.06.043
  • Mohammadi, M. H. Z., Panahirad, S., Navai, A., Bahrami, M. K., Kulak, M., & Gohari, G. (2021). Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress, 1, 100006. https://doi.org/10.1016/j.stress.2021.100006
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681.
  • Nikolova, M. T., & Ivancheva, S. V. (2005). Quantitative flavonoid variations of Artemisia vulgaris L. and Veronica chamaedrys L. in relation to altitude and polluted environment. Acta Biologica Szegediensis, 49(3–4), 29–32.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Pinedo-Guerrero, Z. H., Cadenas-Pliego, G., Ortega-Ortiz, H., González-Morales, S., Benavides-Mendoza, A., Valdés-Reyna, J., & Juárez-Maldonado, A. (2020). Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture, 10(9), 367. https://doi.org/10.3390/agriculture10090367
  • Rossi, L., Zhang, W., Lombardini, L., & Ma, X. (2016). The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution, 219, 28-36. https://doi.org/10.1016/j.envpol.2016.09.060
  • Rout, N. P., & Shaw, B. P. (2001). Salt tolerance in aquatic macrophytes: Ionic relation and interaction. Biologia Plantarum, 44(1), 95-99.
  • Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharopov, F., Antolak, H., Kręgiel, D., ... & Sharifi-Rad, J. (2018). Plants of genus Mentha: From farm to food factory. Plants, 7(3), 70. https://doi.org/10.3390/plants7030070
  • Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M., & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421. https://doi.org/10.3390/plants10020421
  • Sheikhalipour, M., Mohammadi, S. A., Esmaielpour, B., Spanos, A., Mahmoudi, R., Mahdavinia, G. R., ... & Fotopoulos, V. (2023). Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salinity stress by inducing multiple defence pathways in bitter melon plants. International Journal of Biological Macromolecules, 242, 124923. https://doi.org/10.1016/j.ijbiomac.2023.124923
  • Sosa, L., Llanes, A., Reinoso, H., Reginato, M., & Luna, V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Annals of Botany, 96(2), 261–267. https://doi.org/10.1093/aob/mci173
  • Tanu, B., & Harpreet, K. (2016). Benefits of essential oil. Journal of Chemical and Pharmaceutical Research, 8(6), 143–149.
  • Zahedi, S. M., Moharrami, F., Sarikhani, S., & Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10(1), 17672.
There are 38 citations in total.

Details

Primary Language English
Subjects Post Harvest Horticultural Technologies (Incl. Transportation and Storage)
Journal Section Research Articles
Authors

Burcu Öztaş Kurt 0000-0002-4245-5017

İsmail Gül 0000-0003-0558-9240

Project Number Burcu OZTAŞ KURT’s MSc thesis (University of Kilis 7 Aralik, BAP Project-No:/22/LTP/002)
Publication Date October 17, 2025
Submission Date April 28, 2025
Acceptance Date October 14, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Öztaş Kurt, B., & Gül, İ. (2025). Alleviation of Salt Stress Conditions in Some Mint Species Grown under Nanomaterials. Turkish Journal of Agricultural and Natural Sciences, 12(4), 1186-1199. https://doi.org/10.30910/turkjans.1685730