Research Article
BibTex RIS Cite

Efficacy of Trichoderma harzianum Rifai Strain T22 Based Bioproduct on Meloidogyne incognita Reproduction and Plant Parameters

Year 2025, Volume: 12 Issue: 4, 1120 - 1128, 17.10.2025
https://doi.org/10.30910/turkjans.1716555

Abstract

The root-knot nematode (RKN), Meloidogyne incognita is one of the most widespread and economically damaging plant-parasitic nematodes (PPNs). Due to the environmental drawbacks of synthetic nematicides, biological control agents offer a more sustainable alternative for nematode management. The present study aimed to investigate the efficacy of a bioproduct derived from Trichoderma harzianum Rifai Strain T22 in controlling M. incognita in tomato plants, utilising varying doses (30 g da-1, 40 g da-1, 50 g da-1). Additionally, the impact of this bioproduct on tomato development was examined. Abamectin treatment demonstrated the highest efficacy, achieving reductions of 67.28% in the root-gall index, 89.85% in the population of second-stage juveniles (J2), and 81.28% in the number of egg masses, resulting in a reproduction factor (RF) of 0.83. The bioproduct at a dosage of 50 g da⁻¹ resulted in a 30.17% reduction in the root-gall index, a 43.28% reduction in the population of J2, a 37.26% reduction in egg masses, and a RF of 4.65. In contrast, the bioproduct at 30 g da⁻¹ was less effective, yielding reductions of 11.47% in the root-gall index, 22.76% in J2, 16.83% in egg masses, and an RF of 6.33, respectively. The bioproduct applications also significantly enhanced tomato growth, resulting in the highest increases of 22.73% in shoot length, 45.19% in root length, and 19.80% in shoot weight at a rate of 50 g da⁻¹. In conclusion, T. harzianum-based bioproducts are effective for the integrated management of M. incognita, but future research should focus on optimising doses and testing different treatment combinations to further improve efficacy.

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.
  • Abd-Elgawad, M. M. M. (2016). Biological control agents of plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 26, 423–429.
  • Abd-Elgawad, M. M., & Askary, T. H. (2015). Impact of phytonematodes on agriculture economy. In Biocontrol agents of phytonematodes (pp. 3-49). Wallingford UK: CABI. https://doi.org/10.1079/9781780643755.0003
  • Agbessenou, A., Akutse, K. S., Yusuf, A. A., & Khamis, F. M. (2022). The endophyte Trichoderma asperellum M2RT4 induces the systemic release of methyl salicylate and (Z)-jasmone in tomato plant affecting host location and herbivory of Tuta absoluta. Frontiers in Plant Science, 13, 860309. https://doi.org/10.3389/fpls.2022.860309
  • Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20, 57–61. https://doi.org/10.1016/j.sjbs.2012.10.004
  • Contreras-Soto, M. B., Tovar-Pedraza, J. M., Solano-Báez, A. R., Bayardo-Rosales, H., & Márquez-Licona, G. (2025). Biocontrol Strategies Against Plant-Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives. Journal of Fungi, 11(7), 517. https://doi.org/10.3390/jof11070517
  • Dababat, A. A. F. A., & Sikora, R. A. (2007). Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Jordan Journal of Agricultural Sciences, 3(3).
  • Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., Pereira, O. L., Zooca, R. J. F., & Ferraz, S. (2012). Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Protection, 42, 102–107. https://doi.org/10.1016/j.cropro.2012.06.002
  • El-Dabaa, M. T., Abd-El-Khair, H., & El-Nagdi, W. M. A. (2019). Field application of Clethodim herbicide combined with Trichoderma spp. for controlling weeds, root knot nematodes and Rhizoctonia root rot disease in two faba bean cultivars. Journal of Plant Protection Research, 59(2).
  • Fan, H., Yao, M., Wang, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., & Chen, L. (2020). Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode Meloidogyne incognita. BMC microbiology, 20(1), 299. https://doi.org/10.1186/s12866-020-01984-4
  • Hashem, M., & Abo-Elyousr, K. A. (2011). Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Protection, 30(3), 285-292. https://doi.org/10.1016/j.cropro.2010.12.009
  • Hooper, D. J. (1986). Extraction of nematodes from plant material. In J. F. Southey (Ed.), Laboratory methods for work with plants and soil nematodes (pp. 59–80). Ministry of Agriculture, Fisheries and Food.
  • Huang, W. K., Sun, J. H., Cui, J. K., Wang, G. F., Kong, L. A., Peng, H., Chen, S.L., & Peng, D.L. (2014). Efficacy evaluation of fungus Syncephalastrum racemosum and nematicide avermectin against the root-knot nematode Meloidogyne incognita on cucumber. PLoS One, 9, e89717. https://doi.org/10.1371/journal.pone.0089717
  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441. https://doi.org/10.1146/annurev.phyto.38.1.423
  • Khalil, M. S. E., Allam, A. F. G., & Barakat, A. S. T. (2012). Nematicidal activity of some biocide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research, 52, 47–52.
  • Khalil, M. S., & Alqadasi, A. A. (2019). Potential of non-fumigant nematicides at different formulations against southern root-knot nematode (Meloidogyne incognita) on tomato plants. International Journal of Plant Pathology, 8, 23–28. https://doi.org/10.33687/phytopath.008.01.2899
  • Khan, R. A. A., Najeeb, S., Xie, B., & Li, Y. (2020a). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8, 817. https://doi.org/10.3390/microorganisms8060817
  • Krif, G., Lahlali, R., El Aissami, A., Laasli, S. E., Mimouni, A., Serderidis, S., Picaud, T., Moens, A., Dababat, A.A., Fahad, K., & Mokrini, F. (2022). Efficacy of authentic bio-nematicides against the root-knot nematode, Meloidogyne javanica infecting tomato under greenhouse conditions. Physiological and Molecular Plant Pathology, 118, 101803. https://doi.org/10.1016/j.pmpp.2022.101803
  • Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X., & Zhang, K. Q. (2015). Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53, 67–95. https://doi.org/10.1146/annurev-phyto-080614-120336
  • Mokrini, F. (2016). Les nématodes de la tomate dans le Souss-Massa. Agriculture du Maghreb, 93, 54–57.
  • Mokrini, F., Janati, S., Houari, A., Essarioui, A., Bouharroud, R., & Mimouni, A. (2018). Management of plant parasitic nematodes by means of organic amendment. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6, 337–344.
  • Nikoletta, G. N., & Pierluigi, C. (2012). Botanical nematicides: A review. Journal of Agricultural and Food Chemistry, 60, 9929–9940.
  • Oostenbrink, M. (1966). Major characteristics of the relation between nematodes and plants. Mededelingen van de Landbouwhogeschool, 6, 3–46.
  • Peiris, P. U. S., Li, Y., Brown, P., & Xu, C. (2020). Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biological Control, 144, 104235. https://doi.org/10.1016/j.biocontrol.2020.104235
  • Perry, R. N., Moens, M., & Starr, J. L. (2010). Root-knot nematodes. In Nematology (pp. 483–484). https://doi.org/10.1079/9781845934927.0000
  • Pocurull, M., Fullana, A. M., Ferro, M., Valero, P., Escudero, N., Saus, E., Gabaldon, T., & Sorribas, F. J. (2020). Commercial formulates of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato and the effect is additive to that of the Mi-1.2 resistance gene. Frontiers in Microbiology, 10, 3042. https://doi.org/10.3389/fmicb.2019.03042
  • Rahman, M. U., Zhong, X., Uzair, M., & Fan, B. (2024). Application of fungi as biological control strategies for nematode management in horticultural crops. Phytopathology Research, 6(1), 38. https://doi.org/10.1186/s42483-024-00257-6
  • Rajasekharan, S. K., Kim, S., Kim, J. C., & Lee, J. (2020). Nematicidal activity of 5-iodoindole against root-knot nematodes. Pesticide Biochemistry and Physiology, 163, 76-83. https://doi.org/10.1016/j.pestbp.2019.10.012
  • Rashidifard, M., Fourie, H., Ashrafi, S., Engelbrecht, G., Elhady, A., Daneel, M., Claassens, S. (2022). Suppressive effect of soil microbiomes associated with tropical fruit trees on Meloidogyne enterolobii. Microorganisms, 10(5), 894. https://doi.org/10.3390/microorganisms10050894
  • Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., de Souza, J. T., Lewis, J. A., & Chung, S. (2005). Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protection, 24, 141–155. https://doi.org/10.1016/j.cropro.2004.07.004
  • Saharan, R., Patil, J. A., Yadav, S., Kumar, A., & Goyal, V. (2023). The nematicidal potential of novel fungus, Trichoderma asperellum FbMi6 against Meloidogyne incognita. Scientific Reports, 13(1), 6603. https://doi.org/10.1038/s41598-023-33669-z
  • Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020. https://doi.org/10.1016/j.soilbio.2008.03.011
  • Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7), 687-693. https://doi.org/10.1094/PHYTO.2001.91.7.687
  • Sikora, R. A., Helder, J., Molendijk, L. P. G., Desaeger, J., Eves-van den Akker, S., & Mahlein, A. K. (2023). Integrated nematode management in a world in transition: Constraints, policy, processes, and technologies for the future. Annual Review of Phytopathology, 61(1), 209–230. https://doi.org/10.1146/annurev-phyto-021622-113058
  • Spiegel, Y., & Chet, I. (1998). Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integrated Pest Management Reviews, 3(3), 169-175. https://doi.org/10.1023/A:1009625831128
  • Subedi, S., Thapa, B., & Shrestha, J. (2020). Root-knot nematode (Meloidogyne incognita) and its management: A review. Journal of Agricultural and Natural Resources, 3, 21–31. https://doi.org/10.3126/janr.v3i2.32298
  • TariqJaveed, M., Farooq, T., Al-Hazmi, A. S., Hussain, M. D., & Rehman, A. U. (2021). Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. Journal of Invertebrate Pathology, 183, 107626. https://doi.org/10.1016/j.jip.2021.107626
  • Trudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 39, 53–77. https://doi.org/10.1146/annurev.phyto.39.1.53
  • Zeck, W. M. (1971). A rating scheme for field evaluation of root-knot nematode infestation. Pflanzenschutz Nachrichten, 10, 141–144.
  • Zhang, S., Gan, Y., & Xu, B. (2015). Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Applied Soil Ecology, 94, 21-29. https://doi.org/10.1016/j.apsoil.2015.04.010
There are 40 citations in total.

Details

Primary Language English
Subjects Nematology
Journal Section Research Articles
Authors

Furkan Ulaş 0009-0002-3052-4457

Mustafa Imren 0000-0002-7217-9092

Publication Date October 17, 2025
Submission Date June 10, 2025
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Ulaş, F., & Imren, M. (2025). Efficacy of Trichoderma harzianum Rifai Strain T22 Based Bioproduct on Meloidogyne incognita Reproduction and Plant Parameters. Turkish Journal of Agricultural and Natural Sciences, 12(4), 1120-1128. https://doi.org/10.30910/turkjans.1716555