Research Article
BibTex RIS Cite

Spatial and Temporal Variations of Frost-Free Seasons in the Meriç-Ergene Basin

Year 2025, Volume: 12 Issue: 4, 1075 - 1083, 17.10.2025
https://doi.org/10.30910/turkjans.1771990

Abstract

Long-term climate observations reveal a significant upward trend in global average temperatures in recent years. This has led to changes in the timing of frost events throughout the year. Understanding changes in frost-free season length is essential for adapting agricultural production to climatic conditions and minimizing frost-related damage. This study examined the spatial and temporal changes in the parameters of first frost day in autumn (FFA), last frost day in spring (LFS), and frost-free season (FFS) using daily minimum temperature data recorded in the Meriç-Ergene Basin from 1980 to 2024. Spatial distributions were mapped using the inverse distance weighted (IDW) method. Temporal trends were evaluated using the Mann–Kendall test and trend magnitudes were calculated using Sen's slope method. The findings reveal that the average frost-free season in the region lasts approximately 7.6 months. Long-term trend analysis revealed that while LFS shifted backward by approximately 1.6 days per decade, FFA advanced by approximately 5.5 days per decade. Consequently, the frost-free season lengthened by approximately 7.4 days per decade, primarily due to the delayed FFA.

Ethical Statement

This study did not require ethics committee approval as it did not involve human participants, animal experiments, or any sensitive data collection.

Thanks

The authors would like to thank the Turkish State Meteorological Service (MGM) for providing the meteorological data used in this study.

References

  • Ardel, A., Kurter, A., & Dönmez, Y. (1965). Klimatoloji Tatbikatı. İstanbul Üniversitesi Yayın No:1123, Coğrafya Enstitüsü Yayın No: 40, İstanbul.
  • Ault, T. R., Henebry, G. M., De Beurs, K. M., Schwartz, M. D., Betancourt, J. L., & Moore, D. (2013). The false spring of 2012, earliest in North American record. Eos, 94(20), 181–182. https://doi.org/10.1002/2013EO200001
  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2nd ed.). Oxford University Press.
  • Chervenkov, H., & Slavov, K. (2022). Inter-annual variability and trends of the frost-free season characteristics over Central and Southeast Europe in 1950–2019. Journal of Central European Agriculture, 23(1), 154–164. https://doi.org/10.5513/JCEA01/23.1.3394
  • Dorji, T., Piao, S., Wang, X., Zhao, C., Liu, B., Chen, A., Wang, S., & Wang, T. (2021). Emerging negative warming impacts on Tibetan crop yield. Engineering. Advance online publication. https://doi.org/10.1016/j.eng.2021.03.021
  • Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., & Jamason, P. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364–367.
  • Erlat, E., & Türkeş, M. (2016). Dates of frost onset, frost end and the frost-free season in Turkey: Trends, variability and links to the North Atlantic and Arctic Oscillation indices, 1950–2013. Climate Research, 69(2), 155–176. https://doi.org/10.3354/cr01397
  • Eroğlu, İ. (2022). Trakya Yarımadası’nda ortalama hava sıcaklıklarının trend analizi. International Social Sciences Studies Journal, 8(102), 3121–3144.
  • Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold Company.
  • Hosseini, S. M., Karbalaee, A., & Hosseini, S. A. (2021). Spatiotemporal changes of early fall and late spring frost and its trend based on daily minimum temperature in Iran. Arabian Journal of Geosciences, 14, Article 304. https://doi.org/10.1007/s12517-021-06608-3
  • Hultgren, A., Carleton, T. A., Delgado, M., Gergel, D. R., Greenstone, M., Houser, T., Hsiang, S., Jina, A., Kopp, R. E., Malevich, S. B., McCusker, K. E., Mayer, T., Nath, I., Rising, J., Rode, A., & Yuan, J. (2025). Impacts of climate change on global agriculture accounting for adaptation. Nature, 642(8068), 644–652. https://doi.org/10.1038/s41586-025-09085-w
  • IPCC. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson, Eds.). Cambridge University Press.
  • IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, H. Lee & J. Romero, Eds.). Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647
  • Karl, T. R., Knight, R. W., Gallo, K. P., Peterson, T. C., Jones, P. D., Kukla, G., Plummer, N., Razuvayev, V., Lindseay, J., & Charlson, R. J. (1993). A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society, 74(6), 1007–1024.
  • Kukal, M. S., & Irmak, S. (2018). U.S. Agro-Climate in 20ᵗʰ Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Scientific Reports, 8, 6977. https://doi.org/10.1038/s41598-018-25212-2
  • Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008
  • Li, H., Liu, G., Han, C., Yang, Y., & Chen, R. (2022). Quantifying the trends and variations in the frost-free period and the number of frost days across China under climate change using ERA5 Land reanalysis dataset. Remote Sensing, 14(10), 2400. https://doi.org/10.3390/rs14102400
  • Luo, Q. (2011). Temperature thresholds and crop production: a review. Climatic Change, 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6
  • Mapfumo, E., Chanasyk, D. S., Puurveen, D., Elton, S., & Acharya, S. (2023). Historic climate change trends and impacts on crop yields in key agricultural areas of the Prairie Provinces in Canada: A literature review. Canadian Journal of Plant Science, 103(3), 243–258. https://doi.org/10.1139/cjps-2022-0215
  • Ning, X., Liu, G., Zhang, L., Qin, X., Zhou, S., & Qin, Y. (2017). The spatio-temporal variations of frost-free period in China from 1951 to 2012. Journal of Geographical Sciences, 27(1), 23–42. https://doi.org/10.1007/s11442-017-1362-z
  • Salmi, T., Maata, A., Antilla, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann–Kendall Test and Sen's Slope Estimates—The Excel Template Application MAKESENS. Helsinki: Finnish Meteorological Institute.
  • Sun, X., Ren, G., You, Q., Ren, Y., Xu, W., Xue, X., Zhan, Y., Zhang, S., & Zhang, P. (2019). Global diurnal temperature range (DTR) changes since 1901. Climate Dynamics, 52, 3343–3356.
  • Thorne, P. W., Donat, M. G., Dunn, R. J. H., Dunn, H., Williams, C. N., Alexander, L. V., Caesar, J., Durre, I., Harris, I., Hausfather, Z., Jones, P. D., Menne, M. J., Rohde, R., Vose, R. S., Davy, R., Klein-Tank, A. M. G., Lawrimore, J. H., Peterson, T. C., & Rennie, J. J. (2016). Reassessing changes in diurnal temperature range: intercomparison and evaluation of existing global data set estimates. Journal of Geophysical Research.
  • Wassan, S., Xi, C., Jhanjhi, N., & Binte-Imran, L. (2021). Effect of frost on plants, leaves, and forecast of frost events using convolutional neural networks. International Journal of Distributed Sensor Networks, 17(10), 1–12. https://doi.org/10.1177/15501477211053777
  • WMO. (2011). WMO statement on the status of the global climate in 2010. World Meteorological Organization, Geneva.
  • Zahradníček, P., Brázdil, R., Řehoř, J., Trnka, M., Bartošová, L., & Rožnovský, J. (2024). Past and present risk of spring frosts for fruit trees in the Czech Republic. Theoretical and Applied Climatology, 155, 965–984.
  • Zhang, Z., & Lu, C. (2023). Spatiotemporal changes in frost free season and its influence on spring wheat potential yield on the Qinghai–Tibet Plateau from 1978 to 2017. International Journal of Environmental Research and Public Health, 20(5), 4198. https://doi.org/10.3390/ijerph20054198
There are 27 citations in total.

Details

Primary Language English
Subjects Irrigation Systems
Journal Section Research Articles
Authors

Ebru Elif Arslantaş 0000-0003-4217-9179

Umut Mucan 0000-0002-7126-9774

Publication Date October 17, 2025
Submission Date August 25, 2025
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Arslantaş, E. E., & Mucan, U. (2025). Spatial and Temporal Variations of Frost-Free Seasons in the Meriç-Ergene Basin. Turkish Journal of Agricultural and Natural Sciences, 12(4), 1075-1083. https://doi.org/10.30910/turkjans.1771990