Research Article
BibTex RIS Cite

Binary Classification of Faba Bean (Vicia faba L.) Cultivars Based on Appearances Using Image Processing Technique and Machine Learning Algorithms

Year 2025, Volume: 12 Issue: 4, 1084 - 1108, 17.10.2025
https://doi.org/10.30910/turkjans.1773344

Abstract

Appearance is one of the important traits in seeds. Appearance-related features such as shape, size, and color are important parameters in distinguishing seeds from each other. Machine learning algorithms are used to distinguishing plant seed species for different purposes. In this study, four faba bean cultivars (Alexia, Alice, Jasmin, and Arabella) were used to distinguishing based on appearance measurements including shape and size features analyzed in pairs. Eleven machine learning algorithms (NB, MLP, SGD, SL, LMT, SMO, kNN, J48, Random Forest, Random Tree, REPTree) were used to assess binary classification performance utilizing red-green-blue (RGB) color channels through a image processing system. Among all pairs, faba bean seeds of the Alexia and Alice cultivars had the greatest classification accuracy of 90.5% using the Random Forest, and 87.5% with the MLP, SGD, and J48 models. The MLP model achieved the highest accuracy rate of 87% for the categorization of Alexia vs Arabella cultivars, followed by the J48 model with an accuracy rate of 84%. The Alice cultivar possesses the greatest values for area (83.80 mm²), perimeter (47.43 mm), width (9.28 mm), and length (12.50 mm). Wilks' lambda results indicated that the variations in external appearance of faba bean varieties are significant (p < 0.01). All of these results indicated that machine learning algorithms can effectively differentiate faba bean seeds based on their physical characteristics.

References

  • Agarwal, D., & Bachan, P. (2023). Machine learning approach for the classification of wheat grains. Smart Agricultural Technology, 3, 100136. https://doi.org/10.1016/j.atech.2022.100136
  • Akçura, S. (2025). Investigation of the influence of seed size on the biochemical and physical characteristics of black cumin (Nigella sativa) with machine learning techniques. European Food Research and Technology. https://doi.org/10.1007/s00217-025-04839-2
  • Al-Saif, A.M., Abdel-Sattar, M., Aboukarima, A.M., & Eshra, D.H. (2021). Application of a multilayer perceptron artificial neural network for identification of peach cultivars based on physical characteristics. PeerJ 9, e11529. https://doi.org/10.7717/peerj.11529
  • Aljawarneh, S., Yassein, M.B., & Aljundi, M. (2019). An enhanced J48 classification algorithm for the anomaly intrusion detection systems. Cluster Computing 22, 10549-10565. https://doi.org/10.1007/s10586-017-1109-8
  • Aridas, C.K., Kotsiantis, S.B., & Vrahatis, M.N. (2016). Increasing diversity in random forests using Naive Bayes, Artificial Intelligence Applications and Innovations: 12th IFIP WG 12.5 International Conference and Workshops, AIAI 2016, Thessaloniki, Greece, September 16-18, 2016, Proceedings 12. Springer, pp. 75-86.
  • Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4. 5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma 5, 640-651.https://doi.org/10.30865/mib.v5i2.2937
  • Bakhshipour, A., 2021. Cascading feature filtering and boosting algorithm for plant type classification based on image features. IEEE Access 9, 82021-82030. https://doi.org/ 10.1109/ACCESS.2017.
  • Breiman, L. (2001). Random forests. Machine learning 45, 5-32.
  • Butuner, R., Cinar, I., Taspinar, Y. S., Kursun, R., Calp, M. H., & Koklu, M. (2023). Classification of deep image features of lentil varieties with machine learning techniques. European Food Research and Technology, 249(5), 1303-1316. https://doi.org/10.1007/s00217-023-04214-z
  • Çetin, N. (2022). Machine learning for varietal binary classification of soybean (Glycine max (L.) Merrill) seeds based on shape and size attributes. Food Analytical Methods 15, 2260-2273. https://doi.org/10.1007/s12161-022-02286-3
  • Çetin, N., Karaman, K., Beyzi, E., Sağlam, C., & Demirel, B. (2021). Comparative evaluation of some quality characteristics of sunflower oilseeds (Helianthus annuus L.) through machine learning classifiers. Food Analytical Methods, 14, 1666-1681. https://doi.org/10.1007/s12161-021-02002-7
  • Dana, W., & Ivo, W. (2008). Computer image analysis of seed shape and seed color for flax cultivar description. Computers and Electronics in Agriculture, 61, 126-135. https://doi.org/10.1016/j.compag.2007.10.001
  • Devi, R.G., & Sumanjani, P. (2015). Improved classification techniques by combining KNN and Random Forest with Naive Bayesian classifier, 2015 IEEE international conference on engineering and technology (ICETECH). IEEE, pp. 1-4. https://doi.org/10.1109/ICETECH.2015.7274997.
  • Dhull, S.B., Kidwai, M.K., Noor, R., Chawla, P., & Rose, P.K. (2022). A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science, 4, e129. https://doi.org/10.1002/leg3.129
  • Digimizer image analysis software [Internet]. Ostend: Med-Calc Software; 2016. Available from:https://www.digimizer.com
  • Fiannaca, A., La Paglia, L., La Rosa, M., Lo Bosco, G., Renda, G., Rizzo, R., Gaglio, S., & Urso, A. (2018). Deep learning models for bacteria taxonomic classification of metagenomic data. BMC bioinformatics, 19, 61-76. https://doi.org/10.1186/s12859-018-2182-6
  • Fıratlıgil-Durmuş, E., Šárka, E., Bubník, Z., Schejbal, M., Kadlec, P. (2010). Size properties of legume seeds of different varieties using image analysis. Journal of Food Engineering, 99, 445-451. https://doi.org/10.1016/j.jfoodeng.2009.08.005
  • Flake, G.W., & Lawrence, S., 2002. Efficient SVM regression training with SMO. Machine learning 46, 271-290. https://doi.org/10.1023/A:1012474916001
  • Gao, J., Nuyttens, D., Lootens, P., He, Y., & Pieters, J.G. (2018). Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosystems engineering, 170, 39-50. https://doi.org/10.1016/j.biosystemseng.2018.03.006
  • Gordon, A., Breiman, L., Friedman, J., Olshen, R., & Stone, C.J.(1984). Classification and Regression Trees. Biometrics,40, 874. https://doi.org/10.1201/9781315139470
  • Golcuk, A., & Yasar, A. (2023). Classification of bread wheat genotypes by machine learning algorithms. Journal of Food Composition and Analysis, 119, 105253. https://doi.org/10.1016/j.jfca.2023.105253
  • Hrithik, A.K., & Kumar, V. (2022). Classification of Fruit Plants Leaf and Comparative Analysis of Machine Learning and Deep Learning Algorithms, 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, pp. 673-680. https://doi.org/10.1109/ICCCIS56430.2022.10037609.
  • Hsieh, F.Y., Bloch, D.A., & Larsen, M.D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 1623-1634.https://doi.org/10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S
  • Jadhav, S.D., & Channe, H. (2016). Comparative study of K-NN, naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR), 5, 1842-1845.
  • Jegadeeshwaran, R., & Sugumaran, V. (2018). Vibration based condition monitoring of a brake system using statistical features with logit boost and simple logistic algorithm. International Journal of Performability Engineering, 14, 1.
  • Kadlec, P., Skulinová, M., Šárka, E., & Fořt, I. (2006). Microwave and vacuum microwave drying of germinated pea seeds, Proceedings 17th International Congress of Chemical and Process Engineering CHISA.
  • Kara, M., Sayıncı, B., Elkoca, E., Öztürk, İ., & Özmen, T. (2013). Seed size and shape analysis of registered common bean (Phaseolus vulgaris L.) cultivars in Turkey using digital photography. Journal of Agricultural Sciences, 19, 219-234. https://doi.org/10.1501/Tarimbil_0000001247
  • Kieser, J., & Groeneveld, H.T. (1989). Allocation and discrimination based on human odontometric data. American Journal of Physical Anthropology, 79, 331-337.https://doi.org/10.1002/ajpa.1330790309
  • Kim, E.-H., & Kim, H.S. (2021). Perceptron: Basic Principles of Deep Neural Networks. Cardiovascular Prevention and Pharmacotherapy, 3, 64-72. https://doi.org/10.36011/cpp.2021.3.e9
  • Kim, T.-K., Kittler, J., & Cipolla, R. (2007). Discriminative learning and recognition of image set classes using canonical correlations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1005-1018.
  • Koklu, M., Ozkan, I.A. (2020). Multiclass classification of dry beans using computer vision and machine learning techniques. Computers and Electronics in Agriculture, 174, 105507. https://doi.org/10.1016/j.compag.2020.105507
  • Koklu, M., Sarigil, S., & Ozbek, O. (2021). The use of machine learning methods in classification of pumpkin seeds (Cucurbita pepo L.). Genetic Resources and Crop Evolution, 68, 2713-2726. https://doi.org/10.1007/s10722-021-01226-0
  • Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label classifier performance evaluation with confusion matrix. Computer Science & Information Technology, 1, 1-14. https://doi.org/10.5121/esit.2020.100801
  • Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine learning 59, 161-205. https://doi.org/10.1007/s10994-005-0466-3
  • Lurstwut, B., & Pornpanomchai, C. (2017). Image analysis based on color, shape and texture for rice seed (Oryza sativa L.) germination evaluation. Agriculture and Natural Resources, 51, 383-389. https://doi.org/10.1016/j.anres.2017.12.002
  • Maniruzzaman, M., Rahman, M.J., Ahammed, B., Abedin, M.M., Suri, H.S., Biswas, M., El-Baz, A., Bangeas, P., Tsoulfas, G., & Suri, J.S. (2019). Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine, 176, 173-193. https://doi.org/10.1016/j.cmpb.2019.04.008
  • Michelon, T.B., Vieira, E.S.N., & Panobianco, M. (2023). Spectral imaging and chemometrics applied at phenotyping in seed science studies: a systematic review. Seed Science Research, 33, 9-22. https://doi.org/ 10.1017/S0960258523000028
  • Mishra, S., Tripathy, H.K., Mallick, P.K., Bhoi, A.K., & Barsocchi, P. (2020). EAGA-MLP—an enhanced and adaptive hybrid classification model for diabetes diagnosis. Sensors, 20, 4036. https://doi.org/10.3390/s20144036
  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100-114. https://doi.org/10.1007/s11692-011-9109-8
  • Mohamad, T.H., Chen, Y., Chaudhry, Z., & Nataraj, C. (2018). Gear fault detection using recurrence quantification analysis and support vector machine. Journal of Software Engineering and Applications, 11, 181-203. https://doi.org/10.4236/jsea.2018.115012
  • Mortensen, A.K., Gislum, R., Jørgensen, J.R., & Boelt, B. (2021). The use of multispectral imaging and single seed and bulk near-infrared spectroscopy to characterize seed covering structures: Methods and applications in seed testing and research. Agriculture 11, 301. https://doi.org/10.3390/agriculture11040301
  • Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., & Honkavaara, E. (2020). Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sensing, 12, 1070. https://doi.org/10.3390/rs12071070
  • Nikam, S.S. (2015). A comparative study of classification techniques in data mining algorithms. Oriental Journal of Computer Science and Technology, 8, 13-19. Available from: http://www.computerscijournal.org/?p=1592
  • Omid, M., Firouz, M.S., Nouri-Ahmadabadi, H., & Mohtasebi, S.S. (2017). Classification of peeled pistachio kernels using computer vision and color features. Engineering in Agriculture, Environment and Food,10, 259-265. https://doi.org/10.1016/j.eaef.2017.04.002
  • Osuna, E., Freund, R., & Girosi, F. (1997). An improved training algorithm for support vector machines, Neural networks for signal processing VII. Proceedings of the 1997 IEEE signal processing society workshop. IEEE, pp. 276-285. https://doi.org/10.1109/NNSP.1997.622408
  • Parker, J. (2001). Rank and response combination from confusion matrix data. Information Fusion, 2, 113-120. https://doi.org/10.1016/S1566-2535(01)00030-6
  • Popescu, M.C., Balas, V.E., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8, 579-588.
  • Quinlan, J.R. (1987). Generating production rules from decision trees, ijcai. Citeseer, pp. 304-307.
  • Quinlan, J.R. (1993). Combining instance-based and model-based learning, Proceedings of the tenth international conference on machine learning, pp. 236-243.
  • Quinlan, J.R. (2014). C4. 5: programs for machine learning. Elsevier.
  • Rahate, K.A., Madhumita, M., & Prabhakar, P.K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. Lwt, 138, 110796. https://doi.org/10.1016/j.lwt.2020.110796
  • Randhawa, G.S., Hill, K.A., & Kari, L. (2019). ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BMC genomics, 20, 1-21. https://doi.org/10.1186/s12864-019-5571-y
  • Rencher, A.C. (1992). Interpretation of canonical discriminant functions, canonical variates, and principal components. The American Statistician, 46, 217-225. https://doi.org/10.1080/00031305.1992.10475889
  • Ropelewska, E., Çetin, N., & Günaydın, S. (2023). Non-destructive discrimination of vacuum-dried banana using image processing operation and machine learning approach. Food and Bioproducts Processing, 141, 36-48. https://doi.org/10.1016/j.fbp.2023.07.001
  • Ropelewska, E., & Piecko, J. (2022). Discrimination of tomato seeds belonging to different cultivars using machine learning. European Food Research and Technology, 248, 685-705. https://doi.org/10.1007/s00217-021-03920-w
  • Ropelewska, E., & Szwejda‐Grzybowska, J. (2021). A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross‐section and seed textures determined using image processing. Journal of Food Process Engineering, 44, e13694. https://doi.org/10.1111/jfpe.13694
  • Sabah Talabani, H., Abdulhadi, H.M.T., & Ali, M.H. (2024). Obfuscated Malware Memory Detection Employing Lazy Instance Based Learner Algorithm Based On Manhattan Distance Function. Passer Journal of Basic and Applied Sciences, 6, 130-137. https://doi.org/10.24271/psr.2023.391018.1296
  • Singh, A., Halgamuge, M.N., & Lakshmiganthan, R. (2017). Impact of different data types on classifier performance of random forest, naive bayes, and k-nearest neighbors algorithms. International Journal of Advanced Computer Science and Applications, 8. https://doi.org/10.14569/IJACSA.2017.081201
  • Singh, A.K., Bharati, R., Manibhushan, N.C., & Pedpati, A. (2013). An assessment of faba bean (Vicia faba L.) current status and future prospect. African Journal of Agricultural Research, 8, 6634-6641. https://doi.org/10.5897/AJAR2013.7335
  • Sozer, N., Melama, L., Silbir, S., Rizzello, C.G., Flander, L., & Poutanen, K. (2019). Lactic acid fermentation as a pre-treatment process for faba bean flour and its effect on textural, structural and nutritional properties of protein-enriched gluten-free faba bean breads. Foods, 8, 431. https://doi.org/10.3390/foods8100431
  • Stegmayer, G., Milone, D.H., Garran, S., & Burdyn, L. (2013). Automatic recognition of quarantine citrus diseases. Expert Systems with Applications, 40, 3512-3517. https://doi.org/10.1016/j.eswa.2012.12.059
  • Sumner, M., Frank, E., & Hall, M. (2005). Speeding up logistic model tree induction, European conference on principles of data mining and knowledge discovery. Springer, pp. 675-683. https://doi.org/10.1007/11564126_72
  • Taner, A., Mengstu, M.T., Selvi, K.Ç., Duran, H., Kabaş, Ö., Gür, İ., Karaköse, T., & Gheorghiță, N.E. (2023). Multiclass apple varieties classification using machine learning with histogram of oriented gradient and color moments. Applied Sciences, 13, 7682. https://doi.org/10.3390/app13137682
  • Tang, Y., Cheng, Z., Miao, A., Zhuang, J., Hou, C., He, Y., Chu, X., & Luo, S. (2020). Evaluation of cultivar identification performance using feature expressions and classification algorithms on optical images of sweet corn seeds. Agronomy, 10, 1268. https://doi.org/10.3390/agronomy10091268
  • Tańska, M., Rotkiewicz, D., Kozirok, W., & Konopka, I. (2005). Measurement of the geometrical features and surface color of rapeseeds using digital image analysis. Food Research International, 38, 741-750. https://doi.org/10.1016/j.foodres.2005.01.008
  • Tazrart, K., Lamacchia, C., Zaidi, F., & Haros, M. (2016). Nutrient composition and in vitro digestibility of fresh pasta enriched with Vicia faba. Journal of Food Composition and Analysis, 47, 8-15. https://doi.org/10.1016/j.jfca.2015.12.007
  • Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13, 361-378. https://doi.org/10.1007/s10346-015-0557-6
  • Wang, X., Yan, L., & Zhang, Q. (2021). Research on the application of gradient descent algorithm in machine learning, 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE, pp. 11-15. https://doi.org/10.1109/ICCNEA53019.2021.00014
  • Witten, I.H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31, 76-77. https://doi.org/10.1145/507338.507355
  • Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., & Data, M. (2005). Practical machine learning tools and techniques, Data mining. Elsevier Amsterdam, The Netherlands, pp. 403-413.
  • Xu, P., Yang, R., Zeng, T., Zhang, J., Zhang, Y., & Tan, Q. (2021). Varietal classification of maize seeds using computer vision and machine learning techniques. Journal of Food Process Engineering, 44, e13846. https://doi.org/10.1111/jfpe.13846
  • Yoosefzadeh-Najafabadi, M., Earl, H.J., Tulpan, D., Sulik, J., & Eskandari, M. (2021). Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean. Frontiers in Plant Science, 11, 624273. https://doi.org/10.3389/fpls.2020.624273
  • Zhang, W., Zhu, Q., Huang, M., Guo, Y., & Qin, J. (2019). Detection and classification of potato defects using multispectral imaging system based on single shot method. Food Analytical Methods, 12, 2920-2929. https://doi.org/10.1007/s12161-019-01654-w
  • Zhou, F., Cong, G., 2017. On the convergence properties of a K-step averaging stochastic gradient descent algorithm for nonconvex optimization. https://doi.org/10.48550/arXiv.1708.01012
  • Zontul, M., Aydın, F., Doğan, G., Şener, S., & Kaynar, O. (2013). Wind speed forecasting using reptree and bagging methods in Kirklareli-Turkey. Scientific Research and Essays. Available from: https://hdl.handle.net/20.500.11857/243
There are 75 citations in total.

Details

Primary Language English
Subjects Food Technology, Cereals and Legumes
Journal Section Research Articles
Authors

İrem Poyraz 0000-0002-0630-7164

Mevlüt Akçura

Publication Date October 17, 2025
Submission Date August 29, 2025
Acceptance Date October 12, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Poyraz, İ., & Akçura, M. (2025). Binary Classification of Faba Bean (Vicia faba L.) Cultivars Based on Appearances Using Image Processing Technique and Machine Learning Algorithms. Turkish Journal of Agricultural and Natural Sciences, 12(4), 1084-1108. https://doi.org/10.30910/turkjans.1773344