Research Article
BibTex RIS Cite

DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED

Year 2022, Volume: 6 Issue: 2, 510 - 538, 31.10.2022
https://doi.org/10.32328/turkjforsci.1167356

Abstract

Soil erosion in dam watersheds is a crucial phenomenon since dams have become a critical component of economic development for many countries. Therefore, the expected increase in both forest fires and heavy rains in the Mediterranean region poses a threat to the dam watersheds. The increase of these two phenomena will cause a serious increase in soil erosion after forest fires in dam watersheds. Therefore, revealing the possible effects of forest fires on soil erosion risk will be extremely beneficial for taking proactive measures in the management of dam watersheds. So, the goal of this study is to reveal the soil erosion risk and to determine the effect of possible forest fires on the soil erosion risk in the Ayvalı dam watershed. The ICONA model was used to reveal the soil erosion risk in the study area. The effect of forest fires was determined by scenario analysis. In the forest fire scenario, it is assumed that all forests in the study area are burned. Considering this scenario, a new soil erosion risk map was produced with the model. Then these two maps were compared. The results showed that 70.33% of the study area faced very high erosion risk, while 21.65%, 7.19%, 0.77%, and 0.05% of it had high, medium, low, and very low erosion risk, respectively. This potentially very high risk results from the steep slopes, high soil erodibility, and sparse vegetation density in the study area. As a result of the fire scenario, it was determined that while the areas with the very high risk increased by 18.11%, areas with high, medium, low, and very low risk decreased by 48.55%, 26.36%, 35.43%, and 100%, respectively. The findings can be a guide for decision-makers to prioritize necessary precautions depending on the soil erosion potential before and after forest fires.

References

  • Agbeshie, A.A., Abugre, S., Atta-Darkwa, T. et al. (2022) A review of the effects of forest fire on soil properties. J. For. Res, https://doi.org/10.1007/s11676-022-01475-4.
  • Anşin, R. (1983) Türkiye' nin Flora Bölgeleri ve Bu Bölgelerde Yayılan Asal Vejetasyon Tipleri. K.Ü. Orman Fakültesi Derg., 6, 2, 318-339.
  • ASTER, (2018) NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. Distributed by NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003
  • Aydın, M., Güneş Şen, S. & Celik, S. (2018) Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example). Environ Monit Assess, 190, 316. https://doi.org/10.1007/s10661-018-6657-8.
  • Babalık, A. A., Dursun, İ. & Yazıcı, N. (2021a) Türkiye’de erozyon sorunu ve erozyon tahmininde kullanılan modeller. In İ. Cengizler, & S. Duman (Eds.), Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler – 1, (pp. 182- 205). Ankara: Gece kitaplığı.
  • Babalık, A. A., Sarikaya, O. & Orucu, O. K. (2021b) The Current and future compliance areas of Kermes Oak (Quercus coccifera L.)under climate change in Turkey. Fresenius Environmental Bulletin, 30(01): 406-413.
  • Bayramin, I., Dengiz, O., Başkan, O. & Parlak, M. (2003) Soil erosion risk assessment with ICONA model; case study: Beypazari area. Turkish J. Agric. For., 27, 105–116. https://doi.org/10.3906/tar-0211-3.
  • Berney, O., Gallart, F., Griesbach, J. C., Serrano, L. R., Sinago, J. D. R. & Giordano, A. (1997). Guidelines for Mapping and Measurement of Rainfall-Induced Erosion Processes in the Mediterranean Coastal Areas. Priority Actions Programme, Regional Activity Centre, Split, Croatia.
  • Bicen, V.S., Isık, E., Arkan, E, & Ulu, A.E. (2020) A study on determination of regional earthquake risk distribution of masonry structures. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 2(2), 74-86.
  • Boulange, J., Hanasaki, N., Yamazaki, D. et al. (2021) Role of dams in reducing global flood exposure under climate change. Nat Commun, 12, 417. https://doi.org/10.1038/s41467-020-20704-0.
  • Bunyasi, M. M., Onywere, S. M. & Kigomo, M. K. (2013) Sustainable Catchment Management: Assessment of Sedimentation of Masinga Reservoir and its Implication on the Dam’s Hydropower Generation Capacity. International Journal of Humanities and Social Science, Vol. 3 No. 9.
  • Cebecauer, T. & Hofierka, J. (2008) The consequences of land-cover changes on soilerosion distribution in Slovakia. Geomorphology, 98, 187–198.
  • Daus, M., Koberger, K., Koca, K., Beckers, F., Encinas Fernández, J., Weisbrod, B., Dietrich, D., Gerbersdorf, S.U., Glaser, R., Haun, S. et al. (2021) Interdisciplinary Reservoir Management—A Tool for SustainableWater Resources Management. Sustainability, 13, 4498. https://doi.org/10.3390/su13084498.
  • del Campo, A. D., Otsuki, K., Serengil, Y., Blanco, J. A., Yousefpour, R. & Wei, X. (2022) A global synthesis on the effects of thinning on hydrological processes: Implications for forest management. Forest Ecology and Management, Volume 519, 120324, ISSN 0378-1127, https://doi.org/10.1016/j.foreco.2022.120324.
  • Dengiz, O., İmamoğlu, A., Saygın, F., Göl, C., Ediş, S. & Doğan, A. (2014) İnebolu Havzasi’nin Icona Modeli İle Toprak Erozyon Risk Değerlendirmesi. Anadolu Tarım Bilimleri Dergisi, 29 (2) , 136-142 . DOI: 10.7161/anajas.2014.29.2.136-142.
  • Dutal, H. & Reis, M. (2020) Identification of priority areas for sediment yield reduction by using a GeoWEPP-based prioritization approach. Arab J Geosci, 13, 1024 https://doi.org/10.1007/s12517-020-06039-6.
  • Ediş, S., Aytaş, İ. & Özcan, A.U. (2021) ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7(1): 15-22.
  • Ehsani, N., Vörösmarty, C.J., Fekete, B.M. & Stakhiv, E.Z. (2017) Reservoir operations under climate change: storage capacity options to mitigate risk. J. Hydrol, 555, pp. 435-446.
  • Esmaeili Gholzom, H., Ahmadi, H., Moeini, A. et al. (2022) Soil erosion risk assessment in the natural and planted forests using ICONA model and GIS technique. Int. J. Environ. Sci. Technol., 19, 3947–3962. https://doi.org/10.1007/s13762-021-03536-3.
  • Farhan, Y. & Nawaiseh, S. (2015) Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci, 74, 4649–4669. https://doi.org/10.1007/s12665-015-4430-7.
  • Francos, M., Úbeda, X., Pereira, P. & Alcañiza, M. (2018) Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total. Environ., 615 , pp. 664-671.
  • Gaatib, R. & Larabi, A. (2014) Integrated evaluation of soil hazard and risk management in the Oued Beht watershed using remote sensing and GIS techniques: impacts on El Kansra Dam Siltation (Morocco). J. Geogr. Inf. Syst., 6, 677- 742, Article ID:52287,12 pages 10.4236/jgis.2014.66056.
  • GDMS, (2022). General directorate of meteorological service, Ankara.
  • George, M. W., Hotchkiss, R. H. & Huffaker, R. (2017) Reservoir Sustainability and Sediment Management. Journal of Water Resources Planning and Management, Vol. 143, Issue 3. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000720.
  • Giertz, S., Diekkruger, B., Jaeger, A. & Schopp, M. ( 2006) An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Oueme. Adv Geosci, 9 10.5194/adgeo-9-3-2006.
  • Göl, C. (2009) The effects of land use change on soil properties and organic carbon at Dagdami river catchment in Turkey. Journal of Environmental Biology, 30: 825– 830.
  • Göl, C., Çakir, M., Edis, S. & Yilmaz, H. (2010) The effects of land use/land cover change and demographic processes (1950–2008) on soil properties in the Gökçay catchment, Turkey. African Journal of Agricultural Research, 4(13): 1670–1677.
  • Goldsmith, E. & Hildyard, N. (1984) The Social and Environmental Effects of Large Dams. (SEELD):, Volume 1. Overview, Wadebridge Ecological Centre, Camelford, UK.
  • Gündüzoğlu, G. (2019) Kıyı Ege Bölümü’nde erozyon risk modeli tasarımına coğrafi yaklaşım. Doktora tezi, İzmir, 136s. Dokuz Eylül Üniversitesi, İzmir.
  • Holm, A.M., Cridland, S.W. & Roderick, M.L. (2003) The use of time-integrated NOAANDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ., 85, 145–158.
  • Ice, G. G., Neary, D. G. & Adams, P. W. (2004) Effects of Wildfire on Soils and Watershed Processes. Journal of Forestry, Volume 102, Issue 6, Pages 16–20, https://doi.org/10.1093/jof/102.6.16.
  • ICONA, (1997) Guidelines for Mapping and Measurement of Rainfall-inducedErosion Processes in the Mediterranean Coastal Areas. Priority actionprogramme regional activity Centre, Split, Croatia.
  • IPCC, (2022) Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
  • Jaiswala, R. K., Ghosh, N.C., Galkate, R. V. & Thomas, T. (2015) Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic Procedia, 4, 1553–1560.
  • Karagül, R. & Çitgez, T. (2019) Estimation of peak runoff and frequency in an ungauged stream of a forested watershed for flood hazard mapping. J. For. Res., 30, 555–564. https://doi.org/10.1007/s11676-018-0650-5.
  • Kefi, M., Yoshino, K., Setiawan, Y. et al. (2011) Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the Batta watershed in Tunisia. Environ Earth Sci, 64, 707–719. https://doi.org/10.1007/s12665-010-0891-x.
  • Kefi, M., Yoshino, K., Zayani, K. & Isoda, H. (2009) Estimation of Soil Loss by using Combination of Erosion Model and GIS: Case of Study Watersheds in Tunisia. Journal of Arid Land Studies, Volume 19(1), Special issue: Proceedings of Desert Technology IX, pp. 287-290.
  • Korkanç, S. Y. (2018) Effects of the land use/cover on the surface runoff and soil loss in the Niğde Akkaya Dam Watershed, Turkey. Catena, 163:233–243. https://doi.org/10.1016/j.catena.2017.12.023.
  • Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M. & Soussana, J-F. (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability, pp.1267–1326, Europe, Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Krishna Bahadur, K. C. (2012) Spatio–temporal patterns of agricultural expansion and its effect on watershed degradation: a case from the mountains of Nepal. Environ Earth Sci, 65:2063–2077.
  • Kum, G. (2016) The Influence of Dams on Surrounding Climate: The Case of Keban Dam. Gaziantep University Journal of Social Sciences, 15 (1) , 193-204 . DOI: 10.21547/jss.256734.
  • Li, X.R., Jia, X.H., Dong, G.R., 2006. Influence of desertification on vegetation patternvariations in the cold semi-arid grasslands of Qinghai-Tibet Plateau,North-west China. J. Arid Environ. 64, 505–522.
  • Lionello, P. & Scarascia, L. (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Change, 18:1481–1493. https:// doi. org/ 10. 1007/ s10113- 018- 1290-1.
  • Lourenço, L., Nunes, A. N., Bento-Gonçalves, A. & Vieira, A. (2012) Soil Erosion After Wildfires in Portugal: What Happens When Heavy Rainfall Events Occur?. In D. Godone, & S. Stanchi (Eds.), Research on Soil Erosion. IntechOpen. https://doi.org/10.5772/50447.
  • Lu, D., Li, G., Valladares, G., Batistella, M., 2004. Mapping soil erosion risk: inRondonia, Brazilian Amazonia: using RULSE, remote sensing and GIS. LandDegrad. Dev. 15, 499–512.
  • Lucas-Borja, M.E., Plaza-Álvarez, P.A., Gonzalez-Romero, J., Sagra, J., Alfaro-Sánchez, R., Zema, D.A., Moya, D. & de Las Heras, J. (2019) Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci Total Environ., 15;674:615-622. doi: 10.1016/j.scitotenv.2019.04.114.
  • Luo, Z., Deng, L. & Yan, C. (2014) Soil erosion under different plant cover types and its influencing facors in Napahai Catchment, Shangri – La County, Yunnan province, China. Int. J. Sustain. Dev. World Ecol, https://doi.org/10.1080/13504509.2014.924448.
  • Millward, A.A. & Mersey, J.E. (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38: 109-129.
  • Mirchi, A., Watkins, D.W., Huckins, C.J., Madani, K. & Hjorth, P. (2014) Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory. Water Resour. Res., 50, 7515–7526. http://dx.doi.org/10.1002/2013WR015128.
  • Mirzaei, N., Kavian, A. & Chobin, B. (2018) Water erosion risk assessment with ICONA model (Case Study: Gorganroud watershed). In: 6th International congress on development and promotion of fundamental science and technology in society, dpcongress.ir, Iran. https:// civil ica. com/ doc/ 916766/, COI: DPFSTS06_013.
  • Mulligan, M., van Soesbergen, A. & Sáenz, L. (2020) GOODD, a global dataset of more than 38,000 georeferenced dams. Sci Data, 7, 31. https://doi.org/10.1038/s41597-020-0362-5. Oguz, H., Doygun, N., Kisakurek, S. & Ozcalik, M. (2019), Calculating surface temperature of Izmir, Turkey. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 1(2), 36-46.
  • Okatan, A., Yüksel, A. & Reis, M. (2000) Kahramanmaraş ayvalı barajı kızıldere yağış havzasında toprakların erozyon eğilim değerlerinin hidrofiziksel toprak özelliklerine bağlı olarak değişimi. Fen ve Mühendislik Dergisi, 3(1): 28-42.
  • Okou, F., Tente, B., Bachmann, Y. & Sinsin, B. (2016) Regional erosion risk mapping for decision support: a case study from West Africa. Elsevier Land Use Policy, 56:27–37. https:// doi. org/ 10. 1016/j. landu sepol. 2016. 04. 036.
  • Oruk, E.O., Eric, N.J. & Ogogo, A.U. (2012) Influence of soil textural properties and land use cover type on soil erosion of a characteristic ultisols in Betem, Cross River Sate, Nigeria. J. Sustain. Dev., 5, DOI:10.5539/jsd.v5n7p104.
  • Poff, N.L. & Schmidt, J.C. (2016) How dams can go with the flow. Science (80-.). 353, 1099–1100. doi:10.1126/science.aah4926.
  • Rahmati, O., Samadi, M., Shahabi, H. et al (2019) A. Swpt: an automated gisbased tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geosci Front, 8:47–62.
  • Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W. & Ohlen, D.O. (1994) Measuring phenological variability from satellite imagery. J. Veg. Sci., 5,703–714.
  • Reis, M. & Dutal, H. (2019) Determining the effect of deforestation on sustainable water supply in a semi-arid mountainous watershed by using storm water management model. International Journal of Global Warming, Vol.17 No.1, pp.108 – 126. DOI: 10.1504/IJGW.2019.10017601.
  • Reis, M., Abis, B., Atas, S. & Tat, S. (2021) Farklı arazı̇ kullanım şekı̇llerı̇nı̇n bazı toprak özellı̇klerı̇ üzerı̇ne etkı̇lerı̇, Turkish Journal of Forest Science, 5(2), 382-400.
  • Reis, M., Aladag, I. A., Bolat, N. & Dutal, H. (2017a) Using Geoweep model to determine sediment yield and runoff in the Keklik watershed in Kahramanmaras Turkey. Sumar. List, 141, 563–569.
  • Reis, M., Dutal, H., Bolat, N. & Savaci, G. (2017b) Soil erosion risk assessment using GIS and ICONA, a case study: in Kahramanmaras. Turk J Agric Facul Gaziosmanpasa Univ, 34(1):64–75. https:// doi. org/ 10. 13002/ jafag 4208.
  • Roose, E. (1996) Land husbandry—components and strategy. FAO soil bulletin 70, p 380.
  • Sahin, S. & Kurum, E. (2002) Erosion risk analysis by GIS in environmental impact assessments: a case of study—Seyhan Kopru Dam construction. J Environ Manage, 66:239–247.
  • Sahour, H., Gholami, V., Vazifedan, M. & Saeedi, S. (2021) Machine learning applications for water-induced soil erosion modeling and mapping. Soil till Res, 211:105032. https:// doi. org/ 10. 1016/j. still. 2021.105032.
  • Schiettecatte, W., D’hondt, L., Cornelis, W.M., Acosta, M.L., Leal, Z., Lauwers, N., Almoza, Y., Alonso, G.R., Díaz, J., Ruíz, M. & Gabriels, D. (2008). Influence of landuse on soil erosion risk in the Cuyaguateje watershed (Cuba). Catena, 74.
  • Şen, Z. (2021) Reservoirs for Water Supply Under Climate Change Impact—A Review. Water Resour Manage, 35, 3827–3843. https://doi.org/10.1007/s11269-021-02925-07.
  • Shabanzadeh-Khoshrody, M., Azadi, H., Khajooeipour, A. & Nabavi-Pelesaraei, A. (2016) Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. J. Cleaner Prod., 135 , pp. 549-557.
  • Shrimali, S.S., Aggarwal, S.P., Samra, J.S., 2001. Prioritizing erosion-prone areas inhills using remote sensing and GIS-a case study of the Sukhna Lake catchment,Northern India. Int. J. Appl. Earth Obs. Geoinf. 3, 54–60.
  • Stanchi, S., Freppaz, M., Godone, D. & Zanini, E. (2013) Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use Manag, 29:586–596. https:// doi. org/ 10. 1111/sum. 12063.
  • Terranova, O., Antronico, L., Coscarelli, R. & Iaquinta, P. (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 12:228–245.
  • URL-1. (2017) Kahramanmaraş ansiklopedisi. Ayvalı barajı. Erişim: 13 Ağustos 2022. https://ansiklopedi.ksu.edu.tr/ansiklopedi.aspx.
  • Vrieling, A. (2006) Satellite remote sensing for water erosion assessment: a review. Catena, 65:2–18.
  • Weninger, T., Filipović, V., Mešić, M., Clothier, B. & Filipović, L. (2019) Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338:187–196.
  • Wischmeier, W. H. & Smith, D. D. (1978) Predicting rainfall erosion losses: a guide to conservation planning. USDA Handbook 537, Washington.
  • Wolka, K., Tadesse, H., Garedew, E. & Yimer, F. (2015) Soil erosion risk assessment in the Chaleleka wetland watershed, Central Rift Valley of Ethiopia. Environ. Syst. Res., 4,1-12, https://doi.org/10.1186/s40068-015-0030-5.
  • Yazici, N. & Turan, A. (2016) Effect of Forestry afforestation on some soil properties: A case study from Turkey. Fresenius Environmental Bulletin, Volume 25-No. 7/2016, pages 2509-2513.
  • Yüksek, T. , Özçelik, A. E. & Verep, B. (2020) Fırtına Havzasının Bazı Havza Karakteristikleri ile Arazilerin Fizyografik Özelliklere Göre Dağılımlarının Coğrafi Bilgi Sistemleri İle Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5 (3) , 439-449. DOI: 10.35229/jaes.792606.
  • Yüksel, A., Akay, A.E., Gundogan, R., Reis, M. & Cetiner, M. (2008a). Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey. Sensors, 8, 1222-1236. https://doi.org/10.3390/s8021222.
  • Yuksel, A., Gundogan, R. & Akay, A.E. (2008b) Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey. Sensors, 8, 4851-4865. https://doi.org/10.3390/s8084851.
  • Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L. & Tockner, K. (2015) A global boom in hydropower dam construction. Aquat. Sci., 77, 161–170. http://dx.doi.org/10.1007/s00027-014-0377-0.
  • Zhou, P., Luukkanen, O., Tokola, T., Nieminen, J. (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75:319–325.

ORMAN YANGINLARININ TOPRAK EROZYON RİSKİ ÜZERİNDEKİ ETKİLERİNİN ICONA MODELİ KULLANILARAK BELİRLENMESİ: AYVALI BARAJ HAVZASI ÖRNEĞİ

Year 2022, Volume: 6 Issue: 2, 510 - 538, 31.10.2022
https://doi.org/10.32328/turkjforsci.1167356

Abstract

Barajlar birçok ülke için ekonomik kalkınmanın kritik bir bileşeni haline geldiğinden, baraj havzalarındaki toprak erozyonu çok önemli bir olgudur. Dolayısıyla, Akdeniz bölgesinde gerek orman yangınlarında gerekse şiddetli yağışlarda beklenen artış baraj havzaları için tehdit oluşturmaktadır. Bu iki olgudaki artış baraj havzalarında orman yangınları sonrası toprak erozyonunda ciddi bir artışa neden olacaktır. Bu nedenle orman yangınlarının toprak erozyonu riski üzerindeki olası etkilerinin ortaya konulması, baraj havzalarının yönetiminde proaktif önlemlerin alınması açısından son derece faydalı olacaktır. Bu bağlamda bu çalışma Ayvalı baraj havzasında toprak erozyonu riskini ortaya koymayı ve olası orman yangınlarının toprak erozyon riski üzerindeki etkisini belirlemeyi amaçlamaktadır. Çalışma alanındaki toprak erozyonu riskini belirlemek için ICONA modeli kullanılmıştır. Orman yangınlarının etkisi senaryo analizi ile belirlenmiştir. Orman yangını senaryosunda, çalışma alanındaki tüm ormanların yandığı varsayılmıştır. Bu senaryo dikkate alınarak ICONA modeli ile yeni bir toprak erozyonu risk haritası oluşturulmuştur. Daha sonra bu iki harita karşılaştırılmıştır. Sonuçlar, çalışma alanının %70,33'ünün çok yüksek erozyon riskine maruz kalırken, %21,65, %7,19, %0,77 ve %0,05'inin sırasıyla yüksek, orta, düşük ve çok düşük erozyon riskine maruz kaldığını göstermiştir. Çalışma alanındaki bu çok yüksek erozyon riski yüksek eğim, yüksek toprak aşınabilirliği ve seyrek bitki örtüsü yoğunluğundan kaynaklanmaktadır. Yangın senaryosu sonucunda çok yüksek riskli alanlar %18,11 artarken, yüksek, orta, düşük ve çok düşük riskli alanların sırasıyla %48,55, %26,36, %35,43 ve %100 azaldığı tespit edilmiştir. Elde edilen bulgular, orman yangınları öncesi ve sonrasında toprak erozyonu potansiyeline bağlı olarak gerekli önlemlerin önceliklendirilmesi konusunda karar vericilere yol gösterici olabilir. 

References

  • Agbeshie, A.A., Abugre, S., Atta-Darkwa, T. et al. (2022) A review of the effects of forest fire on soil properties. J. For. Res, https://doi.org/10.1007/s11676-022-01475-4.
  • Anşin, R. (1983) Türkiye' nin Flora Bölgeleri ve Bu Bölgelerde Yayılan Asal Vejetasyon Tipleri. K.Ü. Orman Fakültesi Derg., 6, 2, 318-339.
  • ASTER, (2018) NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. Distributed by NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003
  • Aydın, M., Güneş Şen, S. & Celik, S. (2018) Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example). Environ Monit Assess, 190, 316. https://doi.org/10.1007/s10661-018-6657-8.
  • Babalık, A. A., Dursun, İ. & Yazıcı, N. (2021a) Türkiye’de erozyon sorunu ve erozyon tahmininde kullanılan modeller. In İ. Cengizler, & S. Duman (Eds.), Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler – 1, (pp. 182- 205). Ankara: Gece kitaplığı.
  • Babalık, A. A., Sarikaya, O. & Orucu, O. K. (2021b) The Current and future compliance areas of Kermes Oak (Quercus coccifera L.)under climate change in Turkey. Fresenius Environmental Bulletin, 30(01): 406-413.
  • Bayramin, I., Dengiz, O., Başkan, O. & Parlak, M. (2003) Soil erosion risk assessment with ICONA model; case study: Beypazari area. Turkish J. Agric. For., 27, 105–116. https://doi.org/10.3906/tar-0211-3.
  • Berney, O., Gallart, F., Griesbach, J. C., Serrano, L. R., Sinago, J. D. R. & Giordano, A. (1997). Guidelines for Mapping and Measurement of Rainfall-Induced Erosion Processes in the Mediterranean Coastal Areas. Priority Actions Programme, Regional Activity Centre, Split, Croatia.
  • Bicen, V.S., Isık, E., Arkan, E, & Ulu, A.E. (2020) A study on determination of regional earthquake risk distribution of masonry structures. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 2(2), 74-86.
  • Boulange, J., Hanasaki, N., Yamazaki, D. et al. (2021) Role of dams in reducing global flood exposure under climate change. Nat Commun, 12, 417. https://doi.org/10.1038/s41467-020-20704-0.
  • Bunyasi, M. M., Onywere, S. M. & Kigomo, M. K. (2013) Sustainable Catchment Management: Assessment of Sedimentation of Masinga Reservoir and its Implication on the Dam’s Hydropower Generation Capacity. International Journal of Humanities and Social Science, Vol. 3 No. 9.
  • Cebecauer, T. & Hofierka, J. (2008) The consequences of land-cover changes on soilerosion distribution in Slovakia. Geomorphology, 98, 187–198.
  • Daus, M., Koberger, K., Koca, K., Beckers, F., Encinas Fernández, J., Weisbrod, B., Dietrich, D., Gerbersdorf, S.U., Glaser, R., Haun, S. et al. (2021) Interdisciplinary Reservoir Management—A Tool for SustainableWater Resources Management. Sustainability, 13, 4498. https://doi.org/10.3390/su13084498.
  • del Campo, A. D., Otsuki, K., Serengil, Y., Blanco, J. A., Yousefpour, R. & Wei, X. (2022) A global synthesis on the effects of thinning on hydrological processes: Implications for forest management. Forest Ecology and Management, Volume 519, 120324, ISSN 0378-1127, https://doi.org/10.1016/j.foreco.2022.120324.
  • Dengiz, O., İmamoğlu, A., Saygın, F., Göl, C., Ediş, S. & Doğan, A. (2014) İnebolu Havzasi’nin Icona Modeli İle Toprak Erozyon Risk Değerlendirmesi. Anadolu Tarım Bilimleri Dergisi, 29 (2) , 136-142 . DOI: 10.7161/anajas.2014.29.2.136-142.
  • Dutal, H. & Reis, M. (2020) Identification of priority areas for sediment yield reduction by using a GeoWEPP-based prioritization approach. Arab J Geosci, 13, 1024 https://doi.org/10.1007/s12517-020-06039-6.
  • Ediş, S., Aytaş, İ. & Özcan, A.U. (2021) ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7(1): 15-22.
  • Ehsani, N., Vörösmarty, C.J., Fekete, B.M. & Stakhiv, E.Z. (2017) Reservoir operations under climate change: storage capacity options to mitigate risk. J. Hydrol, 555, pp. 435-446.
  • Esmaeili Gholzom, H., Ahmadi, H., Moeini, A. et al. (2022) Soil erosion risk assessment in the natural and planted forests using ICONA model and GIS technique. Int. J. Environ. Sci. Technol., 19, 3947–3962. https://doi.org/10.1007/s13762-021-03536-3.
  • Farhan, Y. & Nawaiseh, S. (2015) Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci, 74, 4649–4669. https://doi.org/10.1007/s12665-015-4430-7.
  • Francos, M., Úbeda, X., Pereira, P. & Alcañiza, M. (2018) Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total. Environ., 615 , pp. 664-671.
  • Gaatib, R. & Larabi, A. (2014) Integrated evaluation of soil hazard and risk management in the Oued Beht watershed using remote sensing and GIS techniques: impacts on El Kansra Dam Siltation (Morocco). J. Geogr. Inf. Syst., 6, 677- 742, Article ID:52287,12 pages 10.4236/jgis.2014.66056.
  • GDMS, (2022). General directorate of meteorological service, Ankara.
  • George, M. W., Hotchkiss, R. H. & Huffaker, R. (2017) Reservoir Sustainability and Sediment Management. Journal of Water Resources Planning and Management, Vol. 143, Issue 3. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000720.
  • Giertz, S., Diekkruger, B., Jaeger, A. & Schopp, M. ( 2006) An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Oueme. Adv Geosci, 9 10.5194/adgeo-9-3-2006.
  • Göl, C. (2009) The effects of land use change on soil properties and organic carbon at Dagdami river catchment in Turkey. Journal of Environmental Biology, 30: 825– 830.
  • Göl, C., Çakir, M., Edis, S. & Yilmaz, H. (2010) The effects of land use/land cover change and demographic processes (1950–2008) on soil properties in the Gökçay catchment, Turkey. African Journal of Agricultural Research, 4(13): 1670–1677.
  • Goldsmith, E. & Hildyard, N. (1984) The Social and Environmental Effects of Large Dams. (SEELD):, Volume 1. Overview, Wadebridge Ecological Centre, Camelford, UK.
  • Gündüzoğlu, G. (2019) Kıyı Ege Bölümü’nde erozyon risk modeli tasarımına coğrafi yaklaşım. Doktora tezi, İzmir, 136s. Dokuz Eylül Üniversitesi, İzmir.
  • Holm, A.M., Cridland, S.W. & Roderick, M.L. (2003) The use of time-integrated NOAANDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ., 85, 145–158.
  • Ice, G. G., Neary, D. G. & Adams, P. W. (2004) Effects of Wildfire on Soils and Watershed Processes. Journal of Forestry, Volume 102, Issue 6, Pages 16–20, https://doi.org/10.1093/jof/102.6.16.
  • ICONA, (1997) Guidelines for Mapping and Measurement of Rainfall-inducedErosion Processes in the Mediterranean Coastal Areas. Priority actionprogramme regional activity Centre, Split, Croatia.
  • IPCC, (2022) Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
  • Jaiswala, R. K., Ghosh, N.C., Galkate, R. V. & Thomas, T. (2015) Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic Procedia, 4, 1553–1560.
  • Karagül, R. & Çitgez, T. (2019) Estimation of peak runoff and frequency in an ungauged stream of a forested watershed for flood hazard mapping. J. For. Res., 30, 555–564. https://doi.org/10.1007/s11676-018-0650-5.
  • Kefi, M., Yoshino, K., Setiawan, Y. et al. (2011) Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the Batta watershed in Tunisia. Environ Earth Sci, 64, 707–719. https://doi.org/10.1007/s12665-010-0891-x.
  • Kefi, M., Yoshino, K., Zayani, K. & Isoda, H. (2009) Estimation of Soil Loss by using Combination of Erosion Model and GIS: Case of Study Watersheds in Tunisia. Journal of Arid Land Studies, Volume 19(1), Special issue: Proceedings of Desert Technology IX, pp. 287-290.
  • Korkanç, S. Y. (2018) Effects of the land use/cover on the surface runoff and soil loss in the Niğde Akkaya Dam Watershed, Turkey. Catena, 163:233–243. https://doi.org/10.1016/j.catena.2017.12.023.
  • Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M. & Soussana, J-F. (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability, pp.1267–1326, Europe, Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Krishna Bahadur, K. C. (2012) Spatio–temporal patterns of agricultural expansion and its effect on watershed degradation: a case from the mountains of Nepal. Environ Earth Sci, 65:2063–2077.
  • Kum, G. (2016) The Influence of Dams on Surrounding Climate: The Case of Keban Dam. Gaziantep University Journal of Social Sciences, 15 (1) , 193-204 . DOI: 10.21547/jss.256734.
  • Li, X.R., Jia, X.H., Dong, G.R., 2006. Influence of desertification on vegetation patternvariations in the cold semi-arid grasslands of Qinghai-Tibet Plateau,North-west China. J. Arid Environ. 64, 505–522.
  • Lionello, P. & Scarascia, L. (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Change, 18:1481–1493. https:// doi. org/ 10. 1007/ s10113- 018- 1290-1.
  • Lourenço, L., Nunes, A. N., Bento-Gonçalves, A. & Vieira, A. (2012) Soil Erosion After Wildfires in Portugal: What Happens When Heavy Rainfall Events Occur?. In D. Godone, & S. Stanchi (Eds.), Research on Soil Erosion. IntechOpen. https://doi.org/10.5772/50447.
  • Lu, D., Li, G., Valladares, G., Batistella, M., 2004. Mapping soil erosion risk: inRondonia, Brazilian Amazonia: using RULSE, remote sensing and GIS. LandDegrad. Dev. 15, 499–512.
  • Lucas-Borja, M.E., Plaza-Álvarez, P.A., Gonzalez-Romero, J., Sagra, J., Alfaro-Sánchez, R., Zema, D.A., Moya, D. & de Las Heras, J. (2019) Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci Total Environ., 15;674:615-622. doi: 10.1016/j.scitotenv.2019.04.114.
  • Luo, Z., Deng, L. & Yan, C. (2014) Soil erosion under different plant cover types and its influencing facors in Napahai Catchment, Shangri – La County, Yunnan province, China. Int. J. Sustain. Dev. World Ecol, https://doi.org/10.1080/13504509.2014.924448.
  • Millward, A.A. & Mersey, J.E. (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38: 109-129.
  • Mirchi, A., Watkins, D.W., Huckins, C.J., Madani, K. & Hjorth, P. (2014) Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory. Water Resour. Res., 50, 7515–7526. http://dx.doi.org/10.1002/2013WR015128.
  • Mirzaei, N., Kavian, A. & Chobin, B. (2018) Water erosion risk assessment with ICONA model (Case Study: Gorganroud watershed). In: 6th International congress on development and promotion of fundamental science and technology in society, dpcongress.ir, Iran. https:// civil ica. com/ doc/ 916766/, COI: DPFSTS06_013.
  • Mulligan, M., van Soesbergen, A. & Sáenz, L. (2020) GOODD, a global dataset of more than 38,000 georeferenced dams. Sci Data, 7, 31. https://doi.org/10.1038/s41597-020-0362-5. Oguz, H., Doygun, N., Kisakurek, S. & Ozcalik, M. (2019), Calculating surface temperature of Izmir, Turkey. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 1(2), 36-46.
  • Okatan, A., Yüksel, A. & Reis, M. (2000) Kahramanmaraş ayvalı barajı kızıldere yağış havzasında toprakların erozyon eğilim değerlerinin hidrofiziksel toprak özelliklerine bağlı olarak değişimi. Fen ve Mühendislik Dergisi, 3(1): 28-42.
  • Okou, F., Tente, B., Bachmann, Y. & Sinsin, B. (2016) Regional erosion risk mapping for decision support: a case study from West Africa. Elsevier Land Use Policy, 56:27–37. https:// doi. org/ 10. 1016/j. landu sepol. 2016. 04. 036.
  • Oruk, E.O., Eric, N.J. & Ogogo, A.U. (2012) Influence of soil textural properties and land use cover type on soil erosion of a characteristic ultisols in Betem, Cross River Sate, Nigeria. J. Sustain. Dev., 5, DOI:10.5539/jsd.v5n7p104.
  • Poff, N.L. & Schmidt, J.C. (2016) How dams can go with the flow. Science (80-.). 353, 1099–1100. doi:10.1126/science.aah4926.
  • Rahmati, O., Samadi, M., Shahabi, H. et al (2019) A. Swpt: an automated gisbased tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geosci Front, 8:47–62.
  • Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W. & Ohlen, D.O. (1994) Measuring phenological variability from satellite imagery. J. Veg. Sci., 5,703–714.
  • Reis, M. & Dutal, H. (2019) Determining the effect of deforestation on sustainable water supply in a semi-arid mountainous watershed by using storm water management model. International Journal of Global Warming, Vol.17 No.1, pp.108 – 126. DOI: 10.1504/IJGW.2019.10017601.
  • Reis, M., Abis, B., Atas, S. & Tat, S. (2021) Farklı arazı̇ kullanım şekı̇llerı̇nı̇n bazı toprak özellı̇klerı̇ üzerı̇ne etkı̇lerı̇, Turkish Journal of Forest Science, 5(2), 382-400.
  • Reis, M., Aladag, I. A., Bolat, N. & Dutal, H. (2017a) Using Geoweep model to determine sediment yield and runoff in the Keklik watershed in Kahramanmaras Turkey. Sumar. List, 141, 563–569.
  • Reis, M., Dutal, H., Bolat, N. & Savaci, G. (2017b) Soil erosion risk assessment using GIS and ICONA, a case study: in Kahramanmaras. Turk J Agric Facul Gaziosmanpasa Univ, 34(1):64–75. https:// doi. org/ 10. 13002/ jafag 4208.
  • Roose, E. (1996) Land husbandry—components and strategy. FAO soil bulletin 70, p 380.
  • Sahin, S. & Kurum, E. (2002) Erosion risk analysis by GIS in environmental impact assessments: a case of study—Seyhan Kopru Dam construction. J Environ Manage, 66:239–247.
  • Sahour, H., Gholami, V., Vazifedan, M. & Saeedi, S. (2021) Machine learning applications for water-induced soil erosion modeling and mapping. Soil till Res, 211:105032. https:// doi. org/ 10. 1016/j. still. 2021.105032.
  • Schiettecatte, W., D’hondt, L., Cornelis, W.M., Acosta, M.L., Leal, Z., Lauwers, N., Almoza, Y., Alonso, G.R., Díaz, J., Ruíz, M. & Gabriels, D. (2008). Influence of landuse on soil erosion risk in the Cuyaguateje watershed (Cuba). Catena, 74.
  • Şen, Z. (2021) Reservoirs for Water Supply Under Climate Change Impact—A Review. Water Resour Manage, 35, 3827–3843. https://doi.org/10.1007/s11269-021-02925-07.
  • Shabanzadeh-Khoshrody, M., Azadi, H., Khajooeipour, A. & Nabavi-Pelesaraei, A. (2016) Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. J. Cleaner Prod., 135 , pp. 549-557.
  • Shrimali, S.S., Aggarwal, S.P., Samra, J.S., 2001. Prioritizing erosion-prone areas inhills using remote sensing and GIS-a case study of the Sukhna Lake catchment,Northern India. Int. J. Appl. Earth Obs. Geoinf. 3, 54–60.
  • Stanchi, S., Freppaz, M., Godone, D. & Zanini, E. (2013) Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use Manag, 29:586–596. https:// doi. org/ 10. 1111/sum. 12063.
  • Terranova, O., Antronico, L., Coscarelli, R. & Iaquinta, P. (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 12:228–245.
  • URL-1. (2017) Kahramanmaraş ansiklopedisi. Ayvalı barajı. Erişim: 13 Ağustos 2022. https://ansiklopedi.ksu.edu.tr/ansiklopedi.aspx.
  • Vrieling, A. (2006) Satellite remote sensing for water erosion assessment: a review. Catena, 65:2–18.
  • Weninger, T., Filipović, V., Mešić, M., Clothier, B. & Filipović, L. (2019) Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338:187–196.
  • Wischmeier, W. H. & Smith, D. D. (1978) Predicting rainfall erosion losses: a guide to conservation planning. USDA Handbook 537, Washington.
  • Wolka, K., Tadesse, H., Garedew, E. & Yimer, F. (2015) Soil erosion risk assessment in the Chaleleka wetland watershed, Central Rift Valley of Ethiopia. Environ. Syst. Res., 4,1-12, https://doi.org/10.1186/s40068-015-0030-5.
  • Yazici, N. & Turan, A. (2016) Effect of Forestry afforestation on some soil properties: A case study from Turkey. Fresenius Environmental Bulletin, Volume 25-No. 7/2016, pages 2509-2513.
  • Yüksek, T. , Özçelik, A. E. & Verep, B. (2020) Fırtına Havzasının Bazı Havza Karakteristikleri ile Arazilerin Fizyografik Özelliklere Göre Dağılımlarının Coğrafi Bilgi Sistemleri İle Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5 (3) , 439-449. DOI: 10.35229/jaes.792606.
  • Yüksel, A., Akay, A.E., Gundogan, R., Reis, M. & Cetiner, M. (2008a). Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey. Sensors, 8, 1222-1236. https://doi.org/10.3390/s8021222.
  • Yuksel, A., Gundogan, R. & Akay, A.E. (2008b) Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey. Sensors, 8, 4851-4865. https://doi.org/10.3390/s8084851.
  • Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L. & Tockner, K. (2015) A global boom in hydropower dam construction. Aquat. Sci., 77, 161–170. http://dx.doi.org/10.1007/s00027-014-0377-0.
  • Zhou, P., Luukkanen, O., Tokola, T., Nieminen, J. (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75:319–325.
There are 81 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering
Journal Section Research Article
Authors

Hurem Dutal 0000-0002-0944-6872

Publication Date October 31, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Dutal, H. (2022). DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED. Turkish Journal of Forest Science, 6(2), 510-538. https://doi.org/10.32328/turkjforsci.1167356
AMA Dutal H. DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED. Turk J For Sci. October 2022;6(2):510-538. doi:10.32328/turkjforsci.1167356
Chicago Dutal, Hurem. “DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED”. Turkish Journal of Forest Science 6, no. 2 (October 2022): 510-38. https://doi.org/10.32328/turkjforsci.1167356.
EndNote Dutal H (October 1, 2022) DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED. Turkish Journal of Forest Science 6 2 510–538.
IEEE H. Dutal, “DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED”, Turk J For Sci, vol. 6, no. 2, pp. 510–538, 2022, doi: 10.32328/turkjforsci.1167356.
ISNAD Dutal, Hurem. “DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED”. Turkish Journal of Forest Science 6/2 (October 2022), 510-538. https://doi.org/10.32328/turkjforsci.1167356.
JAMA Dutal H. DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED. Turk J For Sci. 2022;6:510–538.
MLA Dutal, Hurem. “DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED”. Turkish Journal of Forest Science, vol. 6, no. 2, 2022, pp. 510-38, doi:10.32328/turkjforsci.1167356.
Vancouver Dutal H. DETERMINATION OF THE IMPACT OF FOREST FIRES ON SOIL EROSION RISK BY USING THE ICONA MODEL: A CASE STUDY OF AYVALI DAM WATERSHED. Turk J For Sci. 2022;6(2):510-38.