Research Article
BibTex RIS Cite

BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ

Year 2024, Volume: 8 Issue: 2, 176 - 198, 31.10.2024

Abstract

Sulak alanların %60’ını oluşturan ve yeryüzü toprak organik karbon stokunun %35’inden sorumlu olan subasar orman ekosistemlerinde, makro ve mikro besin stokları bu ekosistemlerin gelişmesi ve sürdürülebilirliği açısından önem kazanmaktadır. Çalışmada, Bursa Karacabey subasar ormanlarında, subasar ve karasal ortamdaki dişbudak meşcerelerinin, ölü örtü ve topraklarının C yoğunluğu, makro ve mikro besin yoğunluğunu ve stoklarını toprak derinlik kademeleri de dikkate alarak belirlemektir. Ölü örtü C, N, P, K, Ca, Mg ve S stoku sırasıyla 1522, 52, 62, 123, 915, 211 ve 110 kg/ha olarak subasar ortamda belirlenirken, karasal ortamda bu değerler N hariç önemli derecede daha düşük olup, sırasıyla 829, 61, 51, 88, 538, 129 ve 61 kg/ha olarak belirlenmiştir. Ölü örtü mikro besin stoklarıda subasar ortamda karasal ortama göre daha yüksek bulunmuştur. Toprak C ve makro besin stoklarıda (N dahil) subasar ortamda daha yüksek bulunmuştur. Topraktaki C, N, P, K, Ca, Mg ve S stoku sırasıyla 246, 27, 6, 85, 104, 188 ve 6 ton/ha olarak subasar ortamda belirlenirken, karasal ortamda bu değerler sırasıyla 233, 24, 5, 77, 177 ve 6 ton/ha olarak belirlenmiştir. Toprak mikro besin (Fe, Mn, Na, Cu, Zn, Cl, Ni ve Co) stoklarıda subasar ortamda karasal ortama göre daha yüksek bulunmuştur. Ek olarak, ölü örtü karbon ile makro ve mikro besin stoklarının meşcere yaşına bağlı olarak azaldığı, topraktaki stoklarının ise artış gösterdiği tespit edilmiştir. C ve N’un en fazla üst topraklarda (0-30 cm) stoklandığı (sırasıyla %71 ve %61), diğer makro ve mikro besinlerin ise alt topraklardaki (30-100 cm) stoklarının, üst topraklardan daha fazla olduğu belirlenmiştir. Sonuçlar, atmosferik karbondioksiti ve azotu tutma ve depolama kapasiteleri nedeniyle iklim değişikliğinin azaltılmasında önemli bir role sahip, subasar orman ekosistemlerinin karbon ve besin döngülerini ve stoklarını anlamaya ve modellemeye faydalı sayısal bilgiler sağlaması açısından önemlidir.

Project Number

121O702

References

  • Aerts, R. (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. http://dx.doi.org/10.2307/3546886
  • Akay, A.E., Gencal, B., & Taş, İ. (2017) Spatiotemporal change detection using landsat ıimagery: the case study of Karacabey flooded forest, Bursa, Turkey. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4,. 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabük, Turkey.
  • Balboa-Murias, M.A., Rojo, A., Álvarez, J.G., & Merino, A. (2006) Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science, 63 (5), 557-565. hal-00884009.
  • Blake, G. R. & Hartge, K. H. (1986). Bulk density 1. Methods of soil analysis: part 1- physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Chapin, F.S., Matson, P.A., & Vitousek, P.M. (2011) Principles of Terrestrial Ecosystem Ecology. New York, NY, USA: Springer.
  • Cierjacks, A., Kleinschmit, B., Babinsky, M., & Kleinschroth, F. (2010) Carbon stocks of soil and vegetation on Danubian floodplains. Journal of Plant Nutrition and Soil Science, 173(5), 644 – 653.
  • Cseh, V., Kiss, M., & Tanács, E. (2014) Carbon sequestration of floodplain forests: A case study from Hungary, Maros river valley. Tiscia, 40, 3-10.
  • D’Elia, A.H., Liles, G.C., Viers, J.H., & Smart, D.R. (2017) Deep carbon storage potential of buried floodplain soils (Scientific Report-UK, 7, 8181). Retrieved from https://doi.org/10.1038/s41598-017-06494-4.
  • Datry, T., Corti, R., Claret, C., & Philippe, M. (2011) Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the Bdrying memory. Aquatic Science, 73, 471-483.
  • Day, F.P.Jr. (1982) Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology, 63, 670-678.
  • Díaz-Pinés, E., Rubio, A., Van Miegroet, H., Montes, F., & Benito, M. (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecology and Management, 262(10), 1895-1904. https://doi.org/10.1016/j.foreco.2011.02.004.
  • Duan, H., Wang, L., Zhang, Y.N., Fu, X.H., Tsang, Y.F., Wu, J.H., & Le, Y.Q. (2018) Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary. Geoderma, 319, 230–238.
  • Fonseca, A.L., Bianchini, I., Pimenta, C.M., Soares, C.B., Mangiavacchi, N. (2013) The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia, 703, 59–67.
  • Foster, N.W., & Bhatti, J.S. (2006) Forest Ecosystems: Nutrient cycling. In R. Lal (Ed) Encyclopedia of soil science (pp.718–719). New York, USA: Taylor and Francis.
  • Gachhadar, P., Baniya, C.B., & Mandal, T. (2022). Soil organic carbon stocks in the forests of different continents. Our Nature, 20(1): 57-69. DOI: https://doi.org/10.3126/on.v20i1.45219.
  • Güner, D., Özkan, K. (2019) Türkiye’deki karaçam ağaçlandırma alanlarında besin stoklarının belirlenmesi. Ormancılık Araştırma Dergisi, 6 (2), 192-207. https://doi.org/10.17568/ogmoad.552340.
  • Hanberry, B.B., Kabrick, J.M., & He, H.S. (2015) Potential tree and soil carbon storage in a major historical floodplain forest with disrupted ecological function, Perspectives in Plant Ecology, Evolution and Systematics, 17 (1), 17-23.
  • Havlin, J.L., Beaton, J.D., Tisdale, S.L., & Nelson, W.L. (1999) Soil fertility and fertilizers: An introduction to nutrient management. 6th ed. Upper Saddle River, N. J.: Prentice Hall.
  • Jaramillo, V.J., Kauffman, J.B., Renteria-Rodriguez,L., Cummings, D.L., & Ellingson, L.J. (2003) Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems, 6, 609–629, DOI: 10.1007/s10021-002-0195-4.
  • Jobbagy, E.G., & Jackson, R.B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
  • Langenbruch, C. (2012) Effects of nutrient cycling through litter of different broadleaved deciduous tree species on soil biochemical properties and the dynamics of carbon and nitrogen in soil (PhD Dissertation). Georg-August-University of Göttingen, Centre of Biodiversity and Sustainable Land Use. Germany.
  • Larmola, T., Alm, J., Juutinen, S., Koppisch, D., Augustin, J., Martikainen, P.J., & Silvola, J. (2006) Spatial patterns of litter decomposition in the littoral zone of boreal lakes. Freshwater Biology, 51, 2252–2264.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., & Six, J. (2009) Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134, 251–256. https://doi.org/10.1016/j. agee.2009.07.006.
  • Lehmann, J., & Schroth, G. (2003) Nutrient Leaching. In: Schroth, G., Sinclair, F., (Eds.). Trees, Crops and Soil Fertility (pp.151-166). Wallingford: CABI Publishing.
  • Li, T., & Ye, Y., (2014). Dynamics of decomposition and nutrient release of leaf litter in Kandelia obovata mangrove forests with different ages in Jiulongjiang estuary, China. Ecol. Eng., 73: 454-460
  • Martins, T.O., Silva-Neto, C.M., Siqueira, K.N., Carvalho, H.C.S., Moraes, D.C., Silva, P.H.F., Fonseca, C.S., Venturoli, F., &
  • Calil, F.N. (2021) Accumulated litter and nutrient stock in biomass and soil in forest formations in the cerrado. Scientia Forestalis, 49(129), e3427. https://doi.org/10.18671/scifor.v49n129.18.
  • Neiff, A.P., Neiff,J.J., & Casco,S.L. (2006). Leaf litter decomposition in three wetland types of the Parana River floodplain. Wetlands, 26 (2006) 558–566.
  • Novák, J., Dušek, D., Kacálek, D., &Slodıčák, M. (2017) Analysis of biomass in young Scots pine stands as a basis for sustainable forest management in Czech lowlands. Journal of Forest Science, 63(12), 555-561. doi: 10.17221/136/2017-JFS.
  • Oubrahim, H., Boulmane, M., Bakker, M. R., Augusto, L., & Halim, M. (2016) Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest, 9, 125-137. https://doi.org/10.3832/ifor1364-008.
  • Pang Y., Tian J., Zhao X., Chao Z., Wang Y., Zhang X., et al. . (2020) The linkages of plant, litter and soil C: N: P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. Peer J, 8, e9274. doi: 10.7717/peerj.9274.
  • Prescott C.E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 https://doi.org/10.1016/j.foreco.2021.119522
  • Prusty, B.A.K., Chandra, R., & Azeez, P.A. (2009) Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Soil Research, 47(2), 177–189. doi: 10.1071/SR08087.
  • Reddy, K.R., & Patrick, Jr. W.H. (1975) Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94.
  • Sarıyıldız, T., & Tanı, M. (2023) Root biomass and root carbon and nitrogen stocks of ash, alder, and oak stands in Karacabey floodplain forest. Forestist, 73(1), 97-107.
  • Sariyildiz, T., Aygün, D.Ö., Parlak, S., & Tani, M. (2022). Effects of land use types and soil depths on soil organic carbon and total nitrogen stocks of Karacabey floodplain forests in northwest Turkey. Wetlands, 42, 102.
  • Sariyildiz, T., Savaci, G., & Kravkaz, I. S. (2015) Effects of tree species, stand age and landuse change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest, 9(1), 165-170. https://doi.org/10.3832/ifor1567-008.
  • Savacı, G., & Tümer, G.A. (2022). Effect of development stages on soil carbon and nitrogen stocks of sessile oak (Quercus petrea (Matt.) Liebl): A case study of Taşköprü, Kastamonu. Artgrid-Journal of Architecture Engineering And Fine Arts, 4(2), 240-253. https://doi.org/10.57165/artgrid.1203364
  • Savacı, G., Sarıyıldız, T., Çağlar, S., Kara, F & Topal E. (2021). The effects of windthrow damage on soil properties in Scots pine, black pine and Kazdağı fir stands in the northwest Turkey. Kastamonu University Journal of Forestry Faculty, 21(3), 229-243. https://doi.org/10.17475/kastorman.1049328
  • Sehlesinger W.H. (1977) Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
  • Shure, D.J., & Gottschalk, M.R. (1985). Litterfall patterns in a floodplain forest. Amer. Midl. Nat, 114: 98-111
  • Stewart, A.J., Halabisky, M., Babcock, C. et al. (2024). Revealing the hidden carbon in forested wetland soils. Nat Commun, 15, 726. https://doi.org/10.1038/s41467-024-44888-x
  • Straková, P., Niemi, R.M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., & Laiho, R. (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8, 2741–2755.
  • Sutfin, N.A., Wohl, E.E., & Dwire, K.A. (2016) Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41, 38–60.
  • Tolunay, D., & Çömez, A. (2008) Türkiye Ormanlarında toprak ve ölü örtüde depolanmış organik karbonmiktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu. 22-25 Ekim 2008, Hatay. 750-765.
  • Torremorell, A., & Gantes, P. (2010) Decomposition and nitrogen dynamics of Rhynchospora asperula in floating soils of Esteros del Iberá, Argentina. Wetlands Ecology and Management, 18, 191–201.
  • Trettin, C.C., Jurgensen, M.F., Gale, M.R., & McLaughlin, J.W., (2011). Recovery of carbon and nutrient pools in a northern forested wetland 11years after harvesting and site preparation. Forest Ecol. Manag. 262, 1826–1833.
  • Trinder, C.J., Johnson, D., & Artz, R.R. (2008) Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland. FEMS Microbiol Ecology, 64, 433–448.
  • Yang, C., &Chen, Y. (2017) Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau China. Trees. 31(5), 1559–1570. doi: 10.1007/s00468-017-1569-8.
  • Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023) Research progress on the decomposition process of plant litter in wetlands: A Review. Water, 15 (18), 3246. https://doi.org/10.3390/w15183246.

DETERMINATION OF ORGANIC CARBON AND NUTRIENTS STOCKS IN FOREST LITTER AND SOIL OF ASH TREE (Fraxinus angustifolia Vahl.) STANDS IN BURSA, KARACABEY FORESTED WETLANDS

Year 2024, Volume: 8 Issue: 2, 176 - 198, 31.10.2024

Abstract

In forested wetlands, which constitute 60% of wetlands and are responsible for 35% of the earth's soil organic carbon stock, macro and micro nutrient stocks are also important in terms of the development and sustainability of these ecosystems. Aim of the study was to determine the carbon, macro and micro-nutrient concentrations and stocks in the litter and soil of ash tree stands at the floodplain and terrestrial sites in Bursa Karacabey. Litter C, N, P, K, Ca, Mg and S stocks in the floodplain were 1522, 52, 62, 123, 915, 211 and 110 kg/ha respectively, while except for N, those values were significantly lower in the terrestrial as 829, 61, 51, 88, 538, 129 and 61 kg/ha, respectively. Litter micronutrient stocks were also higher in the floodplain sites. Soil C and macronutrient stocks were also higher in the floodplain. While soil C, N, P, K, Ca, Mg and S stocks in the floodplain were 246, 27, 6, 85, 104, 188 and 6 ton/ha respectively, these values were found as 233, 24, 5, 77, 177 and 6 ton/ha in the terrestrial. Soil micronutrient stocks were also higher in the floodplain sites. In addition, it was noted that litter carbon and macro and micro nutrient stocks decreased with the stand age, while soil stocks increased. It was also seen that soil C and N were mainly stored in the topsoil (0-30 cm) (71% and 61%, respectively), whereas the stocks of other soil macro and micronutrients in the subsoil (30-100 cm) were higher compared to the topsoil. The results has provided numerical information whşch are useful for understanding and modeling the carbon and nutrient cycling and stocks of forested wetland ecosystems, which have an important role in reducing climate change due to their capacity to capture and store atmospheric CO2 and N.

Ethical Statement

Bu çalışma için etik kurul onayı gerekmemektedir.

Supporting Institution

Bu araştırma TÜBİTAK 1001 121O702 numaralı Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı tarafından desteklenmiştir.

Project Number

121O702

Thanks

TÜBİTAK'a desteklerinden dolayı teşekkür ederiz.

References

  • Aerts, R. (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. http://dx.doi.org/10.2307/3546886
  • Akay, A.E., Gencal, B., & Taş, İ. (2017) Spatiotemporal change detection using landsat ıimagery: the case study of Karacabey flooded forest, Bursa, Turkey. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4,. 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabük, Turkey.
  • Balboa-Murias, M.A., Rojo, A., Álvarez, J.G., & Merino, A. (2006) Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science, 63 (5), 557-565. hal-00884009.
  • Blake, G. R. & Hartge, K. H. (1986). Bulk density 1. Methods of soil analysis: part 1- physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Chapin, F.S., Matson, P.A., & Vitousek, P.M. (2011) Principles of Terrestrial Ecosystem Ecology. New York, NY, USA: Springer.
  • Cierjacks, A., Kleinschmit, B., Babinsky, M., & Kleinschroth, F. (2010) Carbon stocks of soil and vegetation on Danubian floodplains. Journal of Plant Nutrition and Soil Science, 173(5), 644 – 653.
  • Cseh, V., Kiss, M., & Tanács, E. (2014) Carbon sequestration of floodplain forests: A case study from Hungary, Maros river valley. Tiscia, 40, 3-10.
  • D’Elia, A.H., Liles, G.C., Viers, J.H., & Smart, D.R. (2017) Deep carbon storage potential of buried floodplain soils (Scientific Report-UK, 7, 8181). Retrieved from https://doi.org/10.1038/s41598-017-06494-4.
  • Datry, T., Corti, R., Claret, C., & Philippe, M. (2011) Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the Bdrying memory. Aquatic Science, 73, 471-483.
  • Day, F.P.Jr. (1982) Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology, 63, 670-678.
  • Díaz-Pinés, E., Rubio, A., Van Miegroet, H., Montes, F., & Benito, M. (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecology and Management, 262(10), 1895-1904. https://doi.org/10.1016/j.foreco.2011.02.004.
  • Duan, H., Wang, L., Zhang, Y.N., Fu, X.H., Tsang, Y.F., Wu, J.H., & Le, Y.Q. (2018) Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary. Geoderma, 319, 230–238.
  • Fonseca, A.L., Bianchini, I., Pimenta, C.M., Soares, C.B., Mangiavacchi, N. (2013) The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia, 703, 59–67.
  • Foster, N.W., & Bhatti, J.S. (2006) Forest Ecosystems: Nutrient cycling. In R. Lal (Ed) Encyclopedia of soil science (pp.718–719). New York, USA: Taylor and Francis.
  • Gachhadar, P., Baniya, C.B., & Mandal, T. (2022). Soil organic carbon stocks in the forests of different continents. Our Nature, 20(1): 57-69. DOI: https://doi.org/10.3126/on.v20i1.45219.
  • Güner, D., Özkan, K. (2019) Türkiye’deki karaçam ağaçlandırma alanlarında besin stoklarının belirlenmesi. Ormancılık Araştırma Dergisi, 6 (2), 192-207. https://doi.org/10.17568/ogmoad.552340.
  • Hanberry, B.B., Kabrick, J.M., & He, H.S. (2015) Potential tree and soil carbon storage in a major historical floodplain forest with disrupted ecological function, Perspectives in Plant Ecology, Evolution and Systematics, 17 (1), 17-23.
  • Havlin, J.L., Beaton, J.D., Tisdale, S.L., & Nelson, W.L. (1999) Soil fertility and fertilizers: An introduction to nutrient management. 6th ed. Upper Saddle River, N. J.: Prentice Hall.
  • Jaramillo, V.J., Kauffman, J.B., Renteria-Rodriguez,L., Cummings, D.L., & Ellingson, L.J. (2003) Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems, 6, 609–629, DOI: 10.1007/s10021-002-0195-4.
  • Jobbagy, E.G., & Jackson, R.B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
  • Langenbruch, C. (2012) Effects of nutrient cycling through litter of different broadleaved deciduous tree species on soil biochemical properties and the dynamics of carbon and nitrogen in soil (PhD Dissertation). Georg-August-University of Göttingen, Centre of Biodiversity and Sustainable Land Use. Germany.
  • Larmola, T., Alm, J., Juutinen, S., Koppisch, D., Augustin, J., Martikainen, P.J., & Silvola, J. (2006) Spatial patterns of litter decomposition in the littoral zone of boreal lakes. Freshwater Biology, 51, 2252–2264.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., & Six, J. (2009) Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134, 251–256. https://doi.org/10.1016/j. agee.2009.07.006.
  • Lehmann, J., & Schroth, G. (2003) Nutrient Leaching. In: Schroth, G., Sinclair, F., (Eds.). Trees, Crops and Soil Fertility (pp.151-166). Wallingford: CABI Publishing.
  • Li, T., & Ye, Y., (2014). Dynamics of decomposition and nutrient release of leaf litter in Kandelia obovata mangrove forests with different ages in Jiulongjiang estuary, China. Ecol. Eng., 73: 454-460
  • Martins, T.O., Silva-Neto, C.M., Siqueira, K.N., Carvalho, H.C.S., Moraes, D.C., Silva, P.H.F., Fonseca, C.S., Venturoli, F., &
  • Calil, F.N. (2021) Accumulated litter and nutrient stock in biomass and soil in forest formations in the cerrado. Scientia Forestalis, 49(129), e3427. https://doi.org/10.18671/scifor.v49n129.18.
  • Neiff, A.P., Neiff,J.J., & Casco,S.L. (2006). Leaf litter decomposition in three wetland types of the Parana River floodplain. Wetlands, 26 (2006) 558–566.
  • Novák, J., Dušek, D., Kacálek, D., &Slodıčák, M. (2017) Analysis of biomass in young Scots pine stands as a basis for sustainable forest management in Czech lowlands. Journal of Forest Science, 63(12), 555-561. doi: 10.17221/136/2017-JFS.
  • Oubrahim, H., Boulmane, M., Bakker, M. R., Augusto, L., & Halim, M. (2016) Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest, 9, 125-137. https://doi.org/10.3832/ifor1364-008.
  • Pang Y., Tian J., Zhao X., Chao Z., Wang Y., Zhang X., et al. . (2020) The linkages of plant, litter and soil C: N: P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. Peer J, 8, e9274. doi: 10.7717/peerj.9274.
  • Prescott C.E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 https://doi.org/10.1016/j.foreco.2021.119522
  • Prusty, B.A.K., Chandra, R., & Azeez, P.A. (2009) Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Soil Research, 47(2), 177–189. doi: 10.1071/SR08087.
  • Reddy, K.R., & Patrick, Jr. W.H. (1975) Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94.
  • Sarıyıldız, T., & Tanı, M. (2023) Root biomass and root carbon and nitrogen stocks of ash, alder, and oak stands in Karacabey floodplain forest. Forestist, 73(1), 97-107.
  • Sariyildiz, T., Aygün, D.Ö., Parlak, S., & Tani, M. (2022). Effects of land use types and soil depths on soil organic carbon and total nitrogen stocks of Karacabey floodplain forests in northwest Turkey. Wetlands, 42, 102.
  • Sariyildiz, T., Savaci, G., & Kravkaz, I. S. (2015) Effects of tree species, stand age and landuse change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest, 9(1), 165-170. https://doi.org/10.3832/ifor1567-008.
  • Savacı, G., & Tümer, G.A. (2022). Effect of development stages on soil carbon and nitrogen stocks of sessile oak (Quercus petrea (Matt.) Liebl): A case study of Taşköprü, Kastamonu. Artgrid-Journal of Architecture Engineering And Fine Arts, 4(2), 240-253. https://doi.org/10.57165/artgrid.1203364
  • Savacı, G., Sarıyıldız, T., Çağlar, S., Kara, F & Topal E. (2021). The effects of windthrow damage on soil properties in Scots pine, black pine and Kazdağı fir stands in the northwest Turkey. Kastamonu University Journal of Forestry Faculty, 21(3), 229-243. https://doi.org/10.17475/kastorman.1049328
  • Sehlesinger W.H. (1977) Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
  • Shure, D.J., & Gottschalk, M.R. (1985). Litterfall patterns in a floodplain forest. Amer. Midl. Nat, 114: 98-111
  • Stewart, A.J., Halabisky, M., Babcock, C. et al. (2024). Revealing the hidden carbon in forested wetland soils. Nat Commun, 15, 726. https://doi.org/10.1038/s41467-024-44888-x
  • Straková, P., Niemi, R.M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., & Laiho, R. (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8, 2741–2755.
  • Sutfin, N.A., Wohl, E.E., & Dwire, K.A. (2016) Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41, 38–60.
  • Tolunay, D., & Çömez, A. (2008) Türkiye Ormanlarında toprak ve ölü örtüde depolanmış organik karbonmiktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu. 22-25 Ekim 2008, Hatay. 750-765.
  • Torremorell, A., & Gantes, P. (2010) Decomposition and nitrogen dynamics of Rhynchospora asperula in floating soils of Esteros del Iberá, Argentina. Wetlands Ecology and Management, 18, 191–201.
  • Trettin, C.C., Jurgensen, M.F., Gale, M.R., & McLaughlin, J.W., (2011). Recovery of carbon and nutrient pools in a northern forested wetland 11years after harvesting and site preparation. Forest Ecol. Manag. 262, 1826–1833.
  • Trinder, C.J., Johnson, D., & Artz, R.R. (2008) Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland. FEMS Microbiol Ecology, 64, 433–448.
  • Yang, C., &Chen, Y. (2017) Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau China. Trees. 31(5), 1559–1570. doi: 10.1007/s00468-017-1569-8.
  • Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023) Research progress on the decomposition process of plant litter in wetlands: A Review. Water, 15 (18), 3246. https://doi.org/10.3390/w15183246.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Forest Ecosystems
Journal Section Research Article
Authors

Temel Sarıyıldız 0000-0003-3451-3229

Gamze Savacı Selamet 0000-0003-4685-2797

Project Number 121O702
Publication Date October 31, 2024
Submission Date March 10, 2024
Acceptance Date August 30, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Sarıyıldız, T., & Savacı Selamet, G. (2024). BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ. Turkish Journal of Forest Science, 8(2), 176-198.
AMA Sarıyıldız T, Savacı Selamet G. BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ. Turk J For Sci. October 2024;8(2):176-198.
Chicago Sarıyıldız, Temel, and Gamze Savacı Selamet. “BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus Angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ”. Turkish Journal of Forest Science 8, no. 2 (October 2024): 176-98.
EndNote Sarıyıldız T, Savacı Selamet G (October 1, 2024) BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ. Turkish Journal of Forest Science 8 2 176–198.
IEEE T. Sarıyıldız and G. Savacı Selamet, “BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ”, Turk J For Sci, vol. 8, no. 2, pp. 176–198, 2024.
ISNAD Sarıyıldız, Temel - Savacı Selamet, Gamze. “BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus Angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ”. Turkish Journal of Forest Science 8/2 (October 2024), 176-198.
JAMA Sarıyıldız T, Savacı Selamet G. BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ. Turk J For Sci. 2024;8:176–198.
MLA Sarıyıldız, Temel and Gamze Savacı Selamet. “BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus Angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ”. Turkish Journal of Forest Science, vol. 8, no. 2, 2024, pp. 176-98.
Vancouver Sarıyıldız T, Savacı Selamet G. BURSA, KARACABEY SUBASAR ORMANI DİŞBUDAK (Fraxinus angustifolia Vahl.) MEŞCERELERİNİN ÖLÜ ÖRTÜ VE TOPRAKTA DEPOLANAN ORGANİK KARBON VE BESİN ELEMENTLERİNİN BELİRLENMESİ. Turk J For Sci. 2024;8(2):176-98.