Research Article
BibTex RIS Cite

Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.)

Year 2023, , 154 - 161, 31.07.2023
https://doi.org/10.19159/tutad.1276917

Abstract

In the present study, the drought tolerance potential of chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medik.) seeds under different boron (B) levels were assessed. One chickpea (Azkan) and one lentil cultivar (Sahan) were selected for the genetic material. To provide drought condition, different level of polyethylene glycol solution (PEG 6000) was applied to seeds. Germination experiments were performed under PEG-induced stress to create water potentials of 0 (control), -2, and -4 MPa. Then, boron was applied as H3BO3 at 0 (control), 5, and 10 mM. The effects of these abiotic stresses were determined with the measurement parameters of germination rate and root traits. Drought stress adversely affected germination rate and seedling growth characteristics in chickpea and lentil. Especially, seed germination rate is extremely reduced by increased levels of drought stress. An increase in PEG levels from 0 to -4 MPa drastically decreased root and shoot width, and shoot length in chickpea whereas they did not generate a significant difference in seedling growth traits except for root width in lentil. Additionally, the results showed that increasing B treatments decreased the germination rate in both chickpea and lentil. The low concentration of B (5 mM) increased root and shoot length; however, a remarkable decrease was observed in root and shoot growth traits at the highest concentration of B (10 mM). The overall findings show that germination and seedling growth parameters were greatly inhibited by different concentrations of PEG and > 10 mM B levels for chickpea and lentil production.

References

  • Akter, S., Jahan, I., Hossain, M.A., Hossain, M.A., 2021. Laboratory- and field-phenotyping for drought stress tolerance and diversity study in lentil (Lens culinaris Medik.). Phyton, 90(3): 949-970.
  • Alamri, S.A., Siddiqui, M.H., Al-Khaishani, M.Y., Hayssam, M.A., 2018. Boron induces seed germination and seedling growth of Hordeum vulgare L. under NaCl stress. Journal of Advances in Agriculture, 8(1): 1224-1234.
  • Anonymous, 2011. SAS/STAT Software 9.3, SAS Institute, Cary, NC.
  • Anonymous, 2022. Food and Agriculture Data. Food and Agriculture Organization of the United Nations, (http://www.fao.org/faostat/en/-data/QC), (Accessed: 01.02.2022).
  • Ardic, M., Sekmen, A.H., Tokur, S., Ozdemir, F., Turkan, I., 2009. Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biology, 11(3): 328-338.
  • Ayaz, F.A., Kadioglu, A., Urgut, R.T., 2000. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Cienanthe setosa. Canadian Journal of Plant Science, 80(2): 373-378.
  • Bahrami, H., Razmjoo, J., Jafari, A.O., 2012. Effect of drought stress on germination and seedling growth of sesame cultivars (Sesamum indicum L.). International Journal of Agriculture Sciences, 2: 423-428.
  • Burstin, J., Gallardo, K., Mir, R.R., Varshney, R.K., Duc, G., 2011. Improving protein content and nutrition quality. In: A. Pratap and J. Kumar (Eds.), Biology and Breeding of Food Legumes, CABI, Wallingford, UK, pp. 314-328.
  • Camacho-Cristóbal J.J., Martín-Rejano E.M., Herrera-Rodríguez M.B., Navarro-Gochicoa, M.T., Rexach, J., González-Fontes, A., 2015. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. Journal of Experimental Botany, 66(13): 3831-3840.
  • Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., Nachit, M., 2010. Plant breeding and climate changes. The Journal of Agricultural Science, 148(6): 627-637.
  • Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560.
  • Chen, Y., Ghanem, M.E., Siddique, K.H., 2017. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8): 1987-1999.
  • Choukri, H., Hejjaoui, K., El-Baouchi, A., El Haddad, N., Smouni, A., Maalouf, F., Thavarajah, D., Kumar, S., 2020. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Frontiers in Nutrition, 7: 596307.
  • Courtois, B., Ahmadi, N., Khowaja, F., Price, A.H., Rami, J.F., Frouin, J., Hamelin, C., Ruiz, M., 2009. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2: 115-128.
  • Cuartero, J, Bolarin, M.C., Asins, M.J., Moreno, V., 2006. Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5): 1045-1058.
  • Dell, B., Brown, P.H., Bell, R.W., 1997. Boron in Soils and Plants: Review. Kluwer, Academic Publishers, Dordrecht, The Netherlands.
  • El Haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S., 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy, 10(7): 1036.
  • Foti, C., Khah, E., Pavli, O., 2018. Response of lentil genotypes under PEG-induced drought stress: Effect on germination and growth. Plant, 6(4): 75-83.
  • Gaur, P.M., Singh, M.K., Samineni, S., Sajja, S.B., Jukanti, A.K., Kamatam, S., Varshney, R.K., 2016. Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica, 209(1): 253-260.
  • Giuliani, S., Sanguineti, M.C., Tuberosa, R., Bellotti, M., Salvi, S., Landi, P., 2005. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. Journal of Experimental Botany, 56(422): 3061-3070.
  • Herridge, D.F., Rupela, O.P., Serraj, R., Beck, D.P., 1993. Screening techniques and improved biological nitrogen fixation in cool season food legumes. Euphytica, 73(1): 95-108.
  • Hoque, A., Alam, M.S., Khatun, S., Salahin, M., 2021. Response of chickpea (Cicer arietinum L.) to boron and molybdenum fertilization. Journal of Bio-Science, 29(2): 43-51.
  • Idrissi, O., Houasli, C., Udupa, S.M., De Keyser, E., Van Damme, P., Riek, J.D., 2015. Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica, 204: 693-709.
  • Iqbal, S., Wang, X., Mubeen, I., Kamran, M., Kanwal, I., Díaz, G.A., Abbas, A., Parveen, A., Atiq, M.N., Alshaya, H., Zin El-Abedin, T.K., Fahad, S., 2022. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Frontiers in Plant Science, 12: 3378.
  • Karabal, E., 2003. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164: 925-933.
  • Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H., Krishna, H., Chandra, S., Vadez, V., Serraj, R., 2005. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica, 146: 213-222.
  • Khatun, M., Begum, M.E.A., Rashid, M.A., Miah, M.A.M., Hasan, M.K., 2021. Effect of climate change adaptation strategies on production efficiency of chickpea and lentil in Rajshahi District. Bangladesh Journal of Agricultural Economics, 42(1): 55-72.
  • Koskosidis, A., Ebrahim, K.H.A.H., Mavromatis, A., Pavli, O., Vlachostergios, D.N., 2020. Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1): 294-304.
  • Krishnamurthy, L., Kashiwagi, J., Upadhyaya, H.D., Serraj, R., 2003. Genetic diversity of drought avoidance root traits in the mini-core germplasm collection of chickpea. International Chickpea and Pigeonpea Newsletter, 10: 21-24.
  • Kulkarni, M., Deshpande, U., 2007. In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. African Journal of Biotechnology, 6(6): 691-696.
  • Larher, F., Leport, L., Petrivalskyand, M., Chappart, M., 1993. Effectors for the osmoinduced proline response in higher plants. Plant Physiology and Biochemistry, 31: 911-922.
  • le Roux, M.M., Miller, J.T., Waller, J., Döring, M., Bruneau, A., 2022. An expert curated global legume checklist improves the accuracy of occurrence, biodiversity and taxonomic data. Scientific Data, 9(1): 1-12.
  • Maphosa, Y., Jideani, V., 2017. The role of legumes in human nutrition. In: M.C. Hueda (Ed.), Functional Food- Improve Health through Adequate Food, IntechOpen, London, United Kingdom, pp. 103-121.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. 2nd Ed., Academic Press, New York, USA.
  • Marschner, P., 2012. Marschner’s Mineral Nutrition of Higher Plants. 3rd Ed., Academic Press, London, UK.
  • Messina, M.J., 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3): 439-450.
  • Mohammed, A., Tana, T., Singh, P., Korecha, D., Molla, A., 2017. Management options for rainfed chickpea (Cicer arietinum L.) in northeast Ethiopia under climate change condition. Climate Risk Management, 16: 222-233.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I., 2006. Boron induced oxidative damage and antioxidant and nucleolytic respons in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1): 54-62.
  • Mujtaba, S.M., Faisal, S., Khan, M.A., Mumtaz, S., Khanzada, B., 2016. Physiological studies on six wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Agricultural Research & Technology, 1(2): 1-6.
  • Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., Maggio, A., 2014. Effect of drought stress on germination of four lentil genotypes. Journal of Plant Interactions, 9: 354-363.
  • Nalini, P., Bhavana, G., 2013. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. Journal of Trace Elements in Medicine and Biology, 27: 58-64.
  • Oktem, A.G., 2022. Effects of different boron applications on seed yield and some agronomical characteristics of red lentil. Turkish Journal of Field Crops, 27(1): 112-118.
  • Özyazıcı, M.A., Açıkbaş, S., 2021. The effects of boric acid priming on germination and seedling development in foage pea [Pisum sativum ssp. arvense L. (Poir.)]. ISPEC 8th International Conference on Agriculture, Animal Sciences and Rural Development, December 24-25, Conference Proceedings Book, Bingöl/Turkey, pp. 1093-1105. (In Turkish).
  • Pinheiro, C., Chaves, M.M., 2011. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3): 869-882.
  • Reguera, M., Espí, A., Bolaños, L., Bonilla, I., Redondo-Nieto, M., 2009. Endoreduplication before cell differentiation fails in boron deficient legume nodules. Is boron involved in signalling during cell cycle regulation?. New Phytologist, 183(1): 8-12.
  • Riaz, M., Kamran, M., El-Esawi, M.A., Hussain, S., Wang, X., 2021. Boron-toxicity induced changes in cell wall components, boron forms, and antioxidant defense system in rice seedlings. Ecotoxicology and Environmental Safety, 216: 112192.
  • Sabagh, A.E.L., Hossain, A., Islam, M.S., Iqbal, M.A., Amanet, K., Mubeen, M., Nasim, W., Wasaya, A., Llanes, A., Ratnasekera, D., Singhal, R.K., Kumari, A., Meena, R.S., Abdelhamid, M., Hasanuzzaman, M., Raza, M.A., Özyazici, G., Ozyazici, M.A., Erman, M., 2021. Prospective role of plant growth regulators for tolerance to abiotic stresses. In: T. Aftab and K.R. Hakeem (Eds.), Plant Growth Regulators, 1st Eds., Springer, Cham., Switzerland, pp. 1-38.
  • Saglam, A., Terzi, R., Demiralay, M., 2014. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. Acta Biologica Hungarica, 65(2): 178-188.
  • Shabbir, R., Singhal, R.K., Mishra, U.N., Chauhan, J., Javed, T., Hussain, S., Kumar, S., Anuragi, H., Lal, D., Chen, P., 2022. Combined abiotic stresses: challenges and potential for crop improvement. Agronomy, 12(11): 2795.
  • Shah, M.H.R., Bokhari, T.Z., Younis, U., 2013. Boron irrigation effect on germination and morphological attributes of Zea mays cultivars (Cv. Afghoee & Cv. Composite). International Journal of Scientific and Engineering Research, 4(8): 1563-1569.
  • Sharma, S., Xu, S., Ehdaie, B., Hoops, A., Close, T., Lukaszewski, A., Waines, J.G., 2011. Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theoretical and Applied Genetics, 122(4): 759-769.
  • Siddique, K.H.M., Brinsmead, R.B., Knight, R., Knights, E.J., Paull, J.G., Rose, I.A., 2000. Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, Springer, Dordrecht, pp. 289-303.
  • Tepe, H.D., Aydemir, T., 2017. Boron effect on growth and mineral content of lentil plant (Lens culinaris) under salt stress. Celal Bayar University Journal of Science, 13(3): 769-775.
  • Thudi, M., Upadhyaya, H.D., Rathore, A., Gaur, P.M., Krishnamurthy, L., Roorkiwal, M., Nayak, S.N., Chaturvedi, S.K., Basu, P.S., Gangarao, N.V., Fikre, A., Kimurto, P., Sharma, P.C., Sheshashayee, M.S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A., Varshney, R.K., 2014. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PloSOne, 9(5): e96758.
  • Toker, C., Lluch, C., Tejera, N.A., Serraj, R., Siddique, K.H.M., 2007. Abiotic stress. In: S.S. Yadav, R. Redden, W. Chen and B. Sharma (Eds.), Chickpea Breeding and Management, CABI, Wallingford, pp. 474-496.
  • Toker, C., Yadav, S.S., 2010. Legume cultivars for stress environments. In: S.S. Yadav, D.L. McNeil, R. Redden and S.A. Patil (Eds.), Climate Change and Management of Cool Season Grain Legume Crops, Springer, Dordrecht, pp. 351-376.
  • Turhan, A., Kuscu, H., 2021. The effect of boron stress on germination properties of pepper, eggplant and watermelon seeds subjected to salicylic acid pre-application. Anadolu Journal of Agricultural Sciences, 36(2): 179-188.
  • Upadhyaya, H.D., Kashiwagi, J., Varshney, R.K., Gaur, P.M., Saxena, K.B., Krishnamurthy, L., Gowda, C.L.L., Pundir, R.P.S., Chaturvedi, S.K., Basu, P.S., Singh, I.P., 2012. Phenotyping chickpeas and pigeonpeas for adaptation to drought. Frontiers in Physiology, 3: 1-10.
  • Valenciano, J.B., Boto, A., Marcelo, V., 2010. Response of chickpea (Cicer arietinum L.) yield to zinc, boron and molybdenum application under pot conditions. Spanish Journal of Agricultural Research, 8(3): 797-807.
  • Venugopalan, V.K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M.A.S., Ibrahimova, U., Dessoky, E.S., Attia, A.O., Hassan, M.M., Hossain, A., 2021. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Frontiers in Plant Science, 12: 679469.
  • Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K., Nguyen, H.T., 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13): 3267-3277.
  • Yucel, D.O., Anlarsal, A.E., Mart, D., Yucel, C., 2010. Effect of drought stress on early seedling growth of chickpea (Cicer arientinum L.) genotypes. World Applied Science Journal, 11(4): 478-485.
  • Zeroual, A., Baidani, A., Idrissi, O., 2023. Drought stress in lentil (Lens culinaris Medik) and approaches for its management. Horticulturae, 9(1): 1.

Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.)

Year 2023, , 154 - 161, 31.07.2023
https://doi.org/10.19159/tutad.1276917

Abstract

In the present study, the drought tolerance potential of chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medik.) seeds under different boron (B) levels were assessed. One chickpea (Azkan) and one lentil cultivar (Sahan) were selected for the genetic material. To provide drought condition, different level of polyethylene glycol solution (PEG 6000) was applied to seeds. Germination experiments were performed under PEG-induced stress to create water potentials of 0 (control), -2, and -4 MPa. Then, boron was applied as H3BO3 at 0 (control), 5, and 10 mM. The effects of these abiotic stresses were determined with the measurement parameters of germination rate and root traits. Drought stress adversely affected germination rate and seedling growth characteristics in chickpea and lentil. Especially, seed germination rate is extremely reduced by increased levels of drought stress. An increase in PEG levels from 0 to -4 MPa drastically decreased root and shoot width, and shoot length in chickpea whereas they did not generate a significant difference in seedling growth traits except for root width in lentil. Additionally, the results showed that increasing B treatments decreased the germination rate in both chickpea and lentil. The low concentration of B (5 mM) increased root and shoot length; however, a remarkable decrease was observed in root and shoot growth traits at the highest concentration of B (10 mM). The overall findings show that germination and seedling growth parameters were greatly inhibited by different concentrations of PEG and > 10 mM B levels for chickpea and lentil production.

References

  • Akter, S., Jahan, I., Hossain, M.A., Hossain, M.A., 2021. Laboratory- and field-phenotyping for drought stress tolerance and diversity study in lentil (Lens culinaris Medik.). Phyton, 90(3): 949-970.
  • Alamri, S.A., Siddiqui, M.H., Al-Khaishani, M.Y., Hayssam, M.A., 2018. Boron induces seed germination and seedling growth of Hordeum vulgare L. under NaCl stress. Journal of Advances in Agriculture, 8(1): 1224-1234.
  • Anonymous, 2011. SAS/STAT Software 9.3, SAS Institute, Cary, NC.
  • Anonymous, 2022. Food and Agriculture Data. Food and Agriculture Organization of the United Nations, (http://www.fao.org/faostat/en/-data/QC), (Accessed: 01.02.2022).
  • Ardic, M., Sekmen, A.H., Tokur, S., Ozdemir, F., Turkan, I., 2009. Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biology, 11(3): 328-338.
  • Ayaz, F.A., Kadioglu, A., Urgut, R.T., 2000. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Cienanthe setosa. Canadian Journal of Plant Science, 80(2): 373-378.
  • Bahrami, H., Razmjoo, J., Jafari, A.O., 2012. Effect of drought stress on germination and seedling growth of sesame cultivars (Sesamum indicum L.). International Journal of Agriculture Sciences, 2: 423-428.
  • Burstin, J., Gallardo, K., Mir, R.R., Varshney, R.K., Duc, G., 2011. Improving protein content and nutrition quality. In: A. Pratap and J. Kumar (Eds.), Biology and Breeding of Food Legumes, CABI, Wallingford, UK, pp. 314-328.
  • Camacho-Cristóbal J.J., Martín-Rejano E.M., Herrera-Rodríguez M.B., Navarro-Gochicoa, M.T., Rexach, J., González-Fontes, A., 2015. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. Journal of Experimental Botany, 66(13): 3831-3840.
  • Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., Nachit, M., 2010. Plant breeding and climate changes. The Journal of Agricultural Science, 148(6): 627-637.
  • Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560.
  • Chen, Y., Ghanem, M.E., Siddique, K.H., 2017. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8): 1987-1999.
  • Choukri, H., Hejjaoui, K., El-Baouchi, A., El Haddad, N., Smouni, A., Maalouf, F., Thavarajah, D., Kumar, S., 2020. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Frontiers in Nutrition, 7: 596307.
  • Courtois, B., Ahmadi, N., Khowaja, F., Price, A.H., Rami, J.F., Frouin, J., Hamelin, C., Ruiz, M., 2009. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2: 115-128.
  • Cuartero, J, Bolarin, M.C., Asins, M.J., Moreno, V., 2006. Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5): 1045-1058.
  • Dell, B., Brown, P.H., Bell, R.W., 1997. Boron in Soils and Plants: Review. Kluwer, Academic Publishers, Dordrecht, The Netherlands.
  • El Haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S., 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy, 10(7): 1036.
  • Foti, C., Khah, E., Pavli, O., 2018. Response of lentil genotypes under PEG-induced drought stress: Effect on germination and growth. Plant, 6(4): 75-83.
  • Gaur, P.M., Singh, M.K., Samineni, S., Sajja, S.B., Jukanti, A.K., Kamatam, S., Varshney, R.K., 2016. Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica, 209(1): 253-260.
  • Giuliani, S., Sanguineti, M.C., Tuberosa, R., Bellotti, M., Salvi, S., Landi, P., 2005. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. Journal of Experimental Botany, 56(422): 3061-3070.
  • Herridge, D.F., Rupela, O.P., Serraj, R., Beck, D.P., 1993. Screening techniques and improved biological nitrogen fixation in cool season food legumes. Euphytica, 73(1): 95-108.
  • Hoque, A., Alam, M.S., Khatun, S., Salahin, M., 2021. Response of chickpea (Cicer arietinum L.) to boron and molybdenum fertilization. Journal of Bio-Science, 29(2): 43-51.
  • Idrissi, O., Houasli, C., Udupa, S.M., De Keyser, E., Van Damme, P., Riek, J.D., 2015. Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica, 204: 693-709.
  • Iqbal, S., Wang, X., Mubeen, I., Kamran, M., Kanwal, I., Díaz, G.A., Abbas, A., Parveen, A., Atiq, M.N., Alshaya, H., Zin El-Abedin, T.K., Fahad, S., 2022. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Frontiers in Plant Science, 12: 3378.
  • Karabal, E., 2003. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164: 925-933.
  • Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H., Krishna, H., Chandra, S., Vadez, V., Serraj, R., 2005. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica, 146: 213-222.
  • Khatun, M., Begum, M.E.A., Rashid, M.A., Miah, M.A.M., Hasan, M.K., 2021. Effect of climate change adaptation strategies on production efficiency of chickpea and lentil in Rajshahi District. Bangladesh Journal of Agricultural Economics, 42(1): 55-72.
  • Koskosidis, A., Ebrahim, K.H.A.H., Mavromatis, A., Pavli, O., Vlachostergios, D.N., 2020. Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1): 294-304.
  • Krishnamurthy, L., Kashiwagi, J., Upadhyaya, H.D., Serraj, R., 2003. Genetic diversity of drought avoidance root traits in the mini-core germplasm collection of chickpea. International Chickpea and Pigeonpea Newsletter, 10: 21-24.
  • Kulkarni, M., Deshpande, U., 2007. In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. African Journal of Biotechnology, 6(6): 691-696.
  • Larher, F., Leport, L., Petrivalskyand, M., Chappart, M., 1993. Effectors for the osmoinduced proline response in higher plants. Plant Physiology and Biochemistry, 31: 911-922.
  • le Roux, M.M., Miller, J.T., Waller, J., Döring, M., Bruneau, A., 2022. An expert curated global legume checklist improves the accuracy of occurrence, biodiversity and taxonomic data. Scientific Data, 9(1): 1-12.
  • Maphosa, Y., Jideani, V., 2017. The role of legumes in human nutrition. In: M.C. Hueda (Ed.), Functional Food- Improve Health through Adequate Food, IntechOpen, London, United Kingdom, pp. 103-121.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. 2nd Ed., Academic Press, New York, USA.
  • Marschner, P., 2012. Marschner’s Mineral Nutrition of Higher Plants. 3rd Ed., Academic Press, London, UK.
  • Messina, M.J., 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3): 439-450.
  • Mohammed, A., Tana, T., Singh, P., Korecha, D., Molla, A., 2017. Management options for rainfed chickpea (Cicer arietinum L.) in northeast Ethiopia under climate change condition. Climate Risk Management, 16: 222-233.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I., 2006. Boron induced oxidative damage and antioxidant and nucleolytic respons in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1): 54-62.
  • Mujtaba, S.M., Faisal, S., Khan, M.A., Mumtaz, S., Khanzada, B., 2016. Physiological studies on six wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Agricultural Research & Technology, 1(2): 1-6.
  • Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., Maggio, A., 2014. Effect of drought stress on germination of four lentil genotypes. Journal of Plant Interactions, 9: 354-363.
  • Nalini, P., Bhavana, G., 2013. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. Journal of Trace Elements in Medicine and Biology, 27: 58-64.
  • Oktem, A.G., 2022. Effects of different boron applications on seed yield and some agronomical characteristics of red lentil. Turkish Journal of Field Crops, 27(1): 112-118.
  • Özyazıcı, M.A., Açıkbaş, S., 2021. The effects of boric acid priming on germination and seedling development in foage pea [Pisum sativum ssp. arvense L. (Poir.)]. ISPEC 8th International Conference on Agriculture, Animal Sciences and Rural Development, December 24-25, Conference Proceedings Book, Bingöl/Turkey, pp. 1093-1105. (In Turkish).
  • Pinheiro, C., Chaves, M.M., 2011. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3): 869-882.
  • Reguera, M., Espí, A., Bolaños, L., Bonilla, I., Redondo-Nieto, M., 2009. Endoreduplication before cell differentiation fails in boron deficient legume nodules. Is boron involved in signalling during cell cycle regulation?. New Phytologist, 183(1): 8-12.
  • Riaz, M., Kamran, M., El-Esawi, M.A., Hussain, S., Wang, X., 2021. Boron-toxicity induced changes in cell wall components, boron forms, and antioxidant defense system in rice seedlings. Ecotoxicology and Environmental Safety, 216: 112192.
  • Sabagh, A.E.L., Hossain, A., Islam, M.S., Iqbal, M.A., Amanet, K., Mubeen, M., Nasim, W., Wasaya, A., Llanes, A., Ratnasekera, D., Singhal, R.K., Kumari, A., Meena, R.S., Abdelhamid, M., Hasanuzzaman, M., Raza, M.A., Özyazici, G., Ozyazici, M.A., Erman, M., 2021. Prospective role of plant growth regulators for tolerance to abiotic stresses. In: T. Aftab and K.R. Hakeem (Eds.), Plant Growth Regulators, 1st Eds., Springer, Cham., Switzerland, pp. 1-38.
  • Saglam, A., Terzi, R., Demiralay, M., 2014. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. Acta Biologica Hungarica, 65(2): 178-188.
  • Shabbir, R., Singhal, R.K., Mishra, U.N., Chauhan, J., Javed, T., Hussain, S., Kumar, S., Anuragi, H., Lal, D., Chen, P., 2022. Combined abiotic stresses: challenges and potential for crop improvement. Agronomy, 12(11): 2795.
  • Shah, M.H.R., Bokhari, T.Z., Younis, U., 2013. Boron irrigation effect on germination and morphological attributes of Zea mays cultivars (Cv. Afghoee & Cv. Composite). International Journal of Scientific and Engineering Research, 4(8): 1563-1569.
  • Sharma, S., Xu, S., Ehdaie, B., Hoops, A., Close, T., Lukaszewski, A., Waines, J.G., 2011. Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theoretical and Applied Genetics, 122(4): 759-769.
  • Siddique, K.H.M., Brinsmead, R.B., Knight, R., Knights, E.J., Paull, J.G., Rose, I.A., 2000. Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, Springer, Dordrecht, pp. 289-303.
  • Tepe, H.D., Aydemir, T., 2017. Boron effect on growth and mineral content of lentil plant (Lens culinaris) under salt stress. Celal Bayar University Journal of Science, 13(3): 769-775.
  • Thudi, M., Upadhyaya, H.D., Rathore, A., Gaur, P.M., Krishnamurthy, L., Roorkiwal, M., Nayak, S.N., Chaturvedi, S.K., Basu, P.S., Gangarao, N.V., Fikre, A., Kimurto, P., Sharma, P.C., Sheshashayee, M.S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A., Varshney, R.K., 2014. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PloSOne, 9(5): e96758.
  • Toker, C., Lluch, C., Tejera, N.A., Serraj, R., Siddique, K.H.M., 2007. Abiotic stress. In: S.S. Yadav, R. Redden, W. Chen and B. Sharma (Eds.), Chickpea Breeding and Management, CABI, Wallingford, pp. 474-496.
  • Toker, C., Yadav, S.S., 2010. Legume cultivars for stress environments. In: S.S. Yadav, D.L. McNeil, R. Redden and S.A. Patil (Eds.), Climate Change and Management of Cool Season Grain Legume Crops, Springer, Dordrecht, pp. 351-376.
  • Turhan, A., Kuscu, H., 2021. The effect of boron stress on germination properties of pepper, eggplant and watermelon seeds subjected to salicylic acid pre-application. Anadolu Journal of Agricultural Sciences, 36(2): 179-188.
  • Upadhyaya, H.D., Kashiwagi, J., Varshney, R.K., Gaur, P.M., Saxena, K.B., Krishnamurthy, L., Gowda, C.L.L., Pundir, R.P.S., Chaturvedi, S.K., Basu, P.S., Singh, I.P., 2012. Phenotyping chickpeas and pigeonpeas for adaptation to drought. Frontiers in Physiology, 3: 1-10.
  • Valenciano, J.B., Boto, A., Marcelo, V., 2010. Response of chickpea (Cicer arietinum L.) yield to zinc, boron and molybdenum application under pot conditions. Spanish Journal of Agricultural Research, 8(3): 797-807.
  • Venugopalan, V.K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M.A.S., Ibrahimova, U., Dessoky, E.S., Attia, A.O., Hassan, M.M., Hossain, A., 2021. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Frontiers in Plant Science, 12: 679469.
  • Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K., Nguyen, H.T., 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13): 3267-3277.
  • Yucel, D.O., Anlarsal, A.E., Mart, D., Yucel, C., 2010. Effect of drought stress on early seedling growth of chickpea (Cicer arientinum L.) genotypes. World Applied Science Journal, 11(4): 478-485.
  • Zeroual, A., Baidani, A., Idrissi, O., 2023. Drought stress in lentil (Lens culinaris Medik) and approaches for its management. Horticulturae, 9(1): 1.
There are 63 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Research Article
Authors

Duygu Sarı 0000-0002-7909-2627

Publication Date July 31, 2023
Published in Issue Year 2023

Cite

APA Sarı, D. (2023). Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.). Türkiye Tarımsal Araştırmalar Dergisi, 10(2), 154-161. https://doi.org/10.19159/tutad.1276917
AMA Sarı D. Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.). TÜTAD. July 2023;10(2):154-161. doi:10.19159/tutad.1276917
Chicago Sarı, Duygu. “Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer Arietinum L.) and Lentil (Lens Culinaris Medik.)”. Türkiye Tarımsal Araştırmalar Dergisi 10, no. 2 (July 2023): 154-61. https://doi.org/10.19159/tutad.1276917.
EndNote Sarı D (July 1, 2023) Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.). Türkiye Tarımsal Araştırmalar Dergisi 10 2 154–161.
IEEE D. Sarı, “Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.)”, TÜTAD, vol. 10, no. 2, pp. 154–161, 2023, doi: 10.19159/tutad.1276917.
ISNAD Sarı, Duygu. “Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer Arietinum L.) and Lentil (Lens Culinaris Medik.)”. Türkiye Tarımsal Araştırmalar Dergisi 10/2 (July 2023), 154-161. https://doi.org/10.19159/tutad.1276917.
JAMA Sarı D. Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.). TÜTAD. 2023;10:154–161.
MLA Sarı, Duygu. “Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer Arietinum L.) and Lentil (Lens Culinaris Medik.)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 10, no. 2, 2023, pp. 154-61, doi:10.19159/tutad.1276917.
Vancouver Sarı D. Effects of PEG-Induced Drought Stress and Different Boron Levels on Seed Germination and Seedling Growth Characteristics in Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.). TÜTAD. 2023;10(2):154-61.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667