Research Article
BibTex RIS Cite

Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale

Year 2024, , 176 - 190, 28.08.2024
https://doi.org/10.19159/tutad.1434369

Abstract

This study addresses this challenge by focusing on the Revised Universal Soil Loss Equation (RUSLE) to combat excessive soil erosion rates within the Kayacık Dam Basin, located in the semi-arid region of the Tigris-Euphrates Basin in Türkiye. The primary objective is to maintain an average annual soil loss of no more than 10 tons per hectare. To achieve this, the RUSLE model is employed to evaluate sustainable land management (SLM) strategies. These strategies encompass agronomic, vegetative, and structural measures, all of which are intricately linked to RUSLE's C and P factors. Spatial analysis reveals that severe erosion (10-20 t ha-1 y-1) is predominantly concentrated in agricultural areas, spanning 2536.37 hectares. In contrast, very severe erosion (>20 t ha-1 y-1) affects 834.13 hectares of grassland. Statistical analyses underscore the significant contributions of various model factors to predicted soil losses (A). LS, C, K, and R factors account for 80.24%, 44.68%, 0.97%, and 0.27% of the effect, respectively. Remarkably, topography exerts the most substantial influence on agriculture, pasture, and forest/other land uses, contributing 84.46%, 57.29%, and 39.27% to the variation, respectively. These findings highlight the pivotal role of effective agronomic and vegetative practices in ecosystems management, especially within steep-slope landscapes encompassing agriculture, grassland, and forest. Furthermore, the semi-arid regions under investigation contend with the intricate interplay of heightened drought risk and the ramifications of intensive irrigated agriculture on soil erosion. This complex dynamic presents distinct challenges for implementing SLM strategies in the face of evolving climatic conditions and underscores the need for climate-resilient solutions.

References

  • Anonymous, 2015a. Status of the World’s Soil Resources: Main Report-2015. (https://knowledge4 policy.ec.europa.eu/publication/status-worlds-soil-resources-main-report_en), (Accessed: 20.08.2023).
  • Anonymous, 2015b. Türkiye's National-Scale Basin Monitoring and Evaluation System (HIDS). (https://bilgem.tubitak.gov.tr/havza-izleme-ve-deger lendirme-sistemi-hids/), (Accessed: 20.08.2023).
  • Anonymous, 2017. What is Conservation Agriculture? (http://www.fao.org/conservation-agriculture/en/), (Accessed: 14.05.2023).
  • Anonymous, 2018. Opportunities for Soil Sustainability in Europe. EASAC Policy Report 36.
  • Anonymous, 2019. Decision Support System for Land Degradation Neutrality Project. (https://www.thegef .org/projects-operations/projects/9586), (Accessed: 15.05.2023).
  • Bakker, M.M., Govers, G., Van Doorn, A., Quetier, F., Chouvardas, D., Rounsevell, M., 2008. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology, 98(3): 213-226.
  • Başaran, M., 2005. The effect of land use change on soil erosion: A case study in İndağı region Çankırı. PhD Thesis, Ankara University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye. (In Turkish).
  • Bayramin, I., Başaran, M., Erpul, G., Çanga M.R., 2008. Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid. Environmental Monitoring and Assessment, 140: 249-265.
  • Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8: 2013.
  • Cerda, A., Lavee, H., Romero-Diaz, A., Hooke, J., Montanarella, L., 2010. Preface-soil erosion and degradation in Mediterranean-type ecosystems. Land Degradation and Development, 21(2): 71-74.
  • Chou, W.C., 2010. Modelling watershed scale soil loss prediction and sediment yield estimation. Water Resources Management, 24: 2075-2090.
  • Cowie, A.L., Orr, B.J., Castillo Sanchez, V.M., Chasek, P., Crossman, N.D., Erlewein, A., Louwagie, G., Maron, M., Metternicht, G.I., Minelli, S., Tengberg, A.E., Walter, S., Welton, S., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environmental Science & Policy, 79: 25-35.
  • Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., Tucker, C.J., 2014. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 140: 350-364.
  • Diwediga, B., Bao, L.Q., Agodzo, S.K., Tamene, L.D., Wala, K., 2018. Modelling soil erosion response to sustainable landscape management scenarios in the Mo River Watershed (Togo, West Africa). Science of The Total Environment, 625: 1309-1320.
  • Dunjo, G., Pardini, G., Gispert, M., 2004. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. Journal of Arid Environments, 57(2): 239-256.
  • Erpul, G., Sahin, S., Ince, K., Kucumen, A., Akdag, M. A., Demirtas, I., Cetin, E., 2018. Water Erosion Atlas of Türkiye. General Directorate of Desertification and Combating Erosion Publication, Ankara. (In Turkish).
  • Foster, G.R., Jane, L.J., Nowlin, J.D., Laflen, J.M., Young, R.A., 1981. Estimating erosion and sediment yield on field size areas. Transactions of the American Society of Agricultural and Biological Engineers, 24(5): 1253-1262.
  • Garcia-Ruiz, J.M., Begueria, S., Lana-Renault, N., Nadal-Romero, E., Cerda, A., 2017. Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28(1): 5-21.
  • Jain, M.K., Das, D., 2010. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resources Management, 24: 2091-2112.
  • Lee, S., 2004. Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: A case study at Boun, Korea. Environmental Earth Sciences, 45(4): 457-465.
  • Madenoğlu, S., Şahin, S., Pınar, M.Ö., Erpul, G., 2018. The effect of sustainable soil/land management on erosion and dam safety. 5th International Symposium of Dam Safety, 27-31 October, İstanbul, Türkiye, 3: 1398-1409. (In Turkish).
  • Ogawa, S., Saito, G., Mino, N., Uchida S., Khan, N.M., Shafiq, M., 1997. Estimation of soil erosion using USLE and Landsat TM in Pakistan. Proceedings of the 18th Asian Conference on Remote Sensing: ACRS 1997, 20-24 October, Kuala Lumpur, Malaysia.
  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54: 438-447.
  • Pınar, M.Ö., Şahin, S., Madenoğlu, S., Erpul, G., 2018. Determining severe erosion affected areas and estimation reservoir sediment load in Derinöz dam watershed. 5th International Symposium of Dam Safety, 27-31 October, İstanbul, Türkiye, 3: 1088-1099. (In Turkish).
  • Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1): 64-84.
  • Prostocimini, M., Tarolli, P., Cerda, A., 2016. Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews, 161: 191-203.
  • Pruski, F., Nearing, M., 2002. Climate-induced changes in erosion during the 21st century for eight US locations. Water Resources Research, 38(12): 1298.
  • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water-A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Handbook No. 703, United States Government Printing Office, Washington, DC.
  • Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araujo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Gracia, C.A., de la Vega-Leinert, A.C., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpaa, S., Klein, R.J., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabate, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752): 1333-1337.
  • Schwilch, G., Hessel, R., Verzandvoort, S., 2012. Desire for Greener Land: Options for Sustainable Land Management in Drylands. Bern, Switzerland, and Wageningen, The Netherlands: University of Bern-CDE, Alterra-Wageningen UR, ISRIC-World Soil Information and CTA-Technical Centre for Agricultural and Rural Cooperation.
  • Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48: 142-147.
  • Sokouti, R., Nikkami, D., 2017 Optimizing land use pattern to reduce soil erosion. Eurasian Journal of Soil Science, 6(1): 75-83.
  • Torri, D., Poesen, J., Borselli, L., 1997. Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena, 31(1-2): 1-22.
  • Torri, D., Poesen, J., Borselli, L., 2002. Corrigendum to ‘‘Predictability and uncertainty of the soil erodibility factor using a global dataset’’ [Catena 31(1997): 1-22] and to ‘‘Erratum to Predict- ability and uncertainty of the soil erodibility factor using a global dataset” [Catena 32(1998): 307-308]’’. Catena, 46(4): 309–310.
  • Türkeş, M., Öztaş, T., Tercan, E., Erpul, G., Karagöz, A., Dengiz, O., Doğan, O., Şahin, K., Avcıoğlu, B., 2019. Desertification vulnerability and risk assessment for Turkey via an analytical hierarchy process model. Land Degradattion & Development, 31(2): 205-214.
  • Van Rompaey, A.J.J., Govers, G., Puttemans, C., 2002. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surface Processes and Landforms, 27(5): 481-494.
  • Wischmeier, W.H., Smith, D.D., 1958. Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39: 285-291.
  • Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses (No. 537). USDA Agricultural Service Handbook, Washington, D.C.
  • Xiong, Y., Wand, G., Teng, Y., Otsuki, K., 2013. Modeling the impacts of land use changes on soil erosion at the river watershed scale. Kyushu University Journal of the Faculty of Agriculture, 58(2): 377-387.
  • Yesuph, A.Y., Dagnew, A.B., 2019. Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Watershed, Ethiopia. Environmental Systems Research, 8(17): 1-21.

Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale

Year 2024, , 176 - 190, 28.08.2024
https://doi.org/10.19159/tutad.1434369

Abstract

This study addresses this challenge by focusing on the Revised Universal Soil Loss Equation (RUSLE) to combat excessive soil erosion rates within the Kayacık Dam Basin, located in the semi-arid region of the Tigris-Euphrates Basin in Türkiye. The primary objective is to maintain an average annual soil loss of no more than 10 tons per hectare. To achieve this, the RUSLE model is employed to evaluate sustainable land management (SLM) strategies. These strategies encompass agronomic, vegetative, and structural measures, all of which are intricately linked to RUSLE's C and P factors. Spatial analysis reveals that severe erosion (10-20 t ha-1 y-1) is predominantly concentrated in agricultural areas, spanning 2536.37 hectares. In contrast, very severe erosion (>20 t ha-1 y-1) affects 834.13 hectares of grassland. Statistical analyses underscore the significant contributions of various model factors to predicted soil losses (A). LS, C, K, and R factors account for 80.24%, 44.68%, 0.97%, and 0.27% of the effect, respectively. Remarkably, topography exerts the most substantial influence on agriculture, pasture, and forest/other land uses, contributing 84.46%, 57.29%, and 39.27% to the variation, respectively. These findings highlight the pivotal role of effective agronomic and vegetative practices in ecosystems management, especially within steep-slope landscapes encompassing agriculture, grassland, and forest. Furthermore, the semi-arid regions under investigation contend with the intricate interplay of heightened drought risk and the ramifications of intensive irrigated agriculture on soil erosion. This complex dynamic presents distinct challenges for implementing SLM strategies in the face of evolving climatic conditions and underscores the need for climate-resilient solutions.

References

  • Anonymous, 2015a. Status of the World’s Soil Resources: Main Report-2015. (https://knowledge4 policy.ec.europa.eu/publication/status-worlds-soil-resources-main-report_en), (Accessed: 20.08.2023).
  • Anonymous, 2015b. Türkiye's National-Scale Basin Monitoring and Evaluation System (HIDS). (https://bilgem.tubitak.gov.tr/havza-izleme-ve-deger lendirme-sistemi-hids/), (Accessed: 20.08.2023).
  • Anonymous, 2017. What is Conservation Agriculture? (http://www.fao.org/conservation-agriculture/en/), (Accessed: 14.05.2023).
  • Anonymous, 2018. Opportunities for Soil Sustainability in Europe. EASAC Policy Report 36.
  • Anonymous, 2019. Decision Support System for Land Degradation Neutrality Project. (https://www.thegef .org/projects-operations/projects/9586), (Accessed: 15.05.2023).
  • Bakker, M.M., Govers, G., Van Doorn, A., Quetier, F., Chouvardas, D., Rounsevell, M., 2008. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology, 98(3): 213-226.
  • Başaran, M., 2005. The effect of land use change on soil erosion: A case study in İndağı region Çankırı. PhD Thesis, Ankara University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye. (In Turkish).
  • Bayramin, I., Başaran, M., Erpul, G., Çanga M.R., 2008. Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid. Environmental Monitoring and Assessment, 140: 249-265.
  • Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8: 2013.
  • Cerda, A., Lavee, H., Romero-Diaz, A., Hooke, J., Montanarella, L., 2010. Preface-soil erosion and degradation in Mediterranean-type ecosystems. Land Degradation and Development, 21(2): 71-74.
  • Chou, W.C., 2010. Modelling watershed scale soil loss prediction and sediment yield estimation. Water Resources Management, 24: 2075-2090.
  • Cowie, A.L., Orr, B.J., Castillo Sanchez, V.M., Chasek, P., Crossman, N.D., Erlewein, A., Louwagie, G., Maron, M., Metternicht, G.I., Minelli, S., Tengberg, A.E., Walter, S., Welton, S., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environmental Science & Policy, 79: 25-35.
  • Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., Tucker, C.J., 2014. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 140: 350-364.
  • Diwediga, B., Bao, L.Q., Agodzo, S.K., Tamene, L.D., Wala, K., 2018. Modelling soil erosion response to sustainable landscape management scenarios in the Mo River Watershed (Togo, West Africa). Science of The Total Environment, 625: 1309-1320.
  • Dunjo, G., Pardini, G., Gispert, M., 2004. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. Journal of Arid Environments, 57(2): 239-256.
  • Erpul, G., Sahin, S., Ince, K., Kucumen, A., Akdag, M. A., Demirtas, I., Cetin, E., 2018. Water Erosion Atlas of Türkiye. General Directorate of Desertification and Combating Erosion Publication, Ankara. (In Turkish).
  • Foster, G.R., Jane, L.J., Nowlin, J.D., Laflen, J.M., Young, R.A., 1981. Estimating erosion and sediment yield on field size areas. Transactions of the American Society of Agricultural and Biological Engineers, 24(5): 1253-1262.
  • Garcia-Ruiz, J.M., Begueria, S., Lana-Renault, N., Nadal-Romero, E., Cerda, A., 2017. Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28(1): 5-21.
  • Jain, M.K., Das, D., 2010. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resources Management, 24: 2091-2112.
  • Lee, S., 2004. Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: A case study at Boun, Korea. Environmental Earth Sciences, 45(4): 457-465.
  • Madenoğlu, S., Şahin, S., Pınar, M.Ö., Erpul, G., 2018. The effect of sustainable soil/land management on erosion and dam safety. 5th International Symposium of Dam Safety, 27-31 October, İstanbul, Türkiye, 3: 1398-1409. (In Turkish).
  • Ogawa, S., Saito, G., Mino, N., Uchida S., Khan, N.M., Shafiq, M., 1997. Estimation of soil erosion using USLE and Landsat TM in Pakistan. Proceedings of the 18th Asian Conference on Remote Sensing: ACRS 1997, 20-24 October, Kuala Lumpur, Malaysia.
  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54: 438-447.
  • Pınar, M.Ö., Şahin, S., Madenoğlu, S., Erpul, G., 2018. Determining severe erosion affected areas and estimation reservoir sediment load in Derinöz dam watershed. 5th International Symposium of Dam Safety, 27-31 October, İstanbul, Türkiye, 3: 1088-1099. (In Turkish).
  • Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1): 64-84.
  • Prostocimini, M., Tarolli, P., Cerda, A., 2016. Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews, 161: 191-203.
  • Pruski, F., Nearing, M., 2002. Climate-induced changes in erosion during the 21st century for eight US locations. Water Resources Research, 38(12): 1298.
  • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water-A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Handbook No. 703, United States Government Printing Office, Washington, DC.
  • Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araujo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Gracia, C.A., de la Vega-Leinert, A.C., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpaa, S., Klein, R.J., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabate, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752): 1333-1337.
  • Schwilch, G., Hessel, R., Verzandvoort, S., 2012. Desire for Greener Land: Options for Sustainable Land Management in Drylands. Bern, Switzerland, and Wageningen, The Netherlands: University of Bern-CDE, Alterra-Wageningen UR, ISRIC-World Soil Information and CTA-Technical Centre for Agricultural and Rural Cooperation.
  • Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48: 142-147.
  • Sokouti, R., Nikkami, D., 2017 Optimizing land use pattern to reduce soil erosion. Eurasian Journal of Soil Science, 6(1): 75-83.
  • Torri, D., Poesen, J., Borselli, L., 1997. Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena, 31(1-2): 1-22.
  • Torri, D., Poesen, J., Borselli, L., 2002. Corrigendum to ‘‘Predictability and uncertainty of the soil erodibility factor using a global dataset’’ [Catena 31(1997): 1-22] and to ‘‘Erratum to Predict- ability and uncertainty of the soil erodibility factor using a global dataset” [Catena 32(1998): 307-308]’’. Catena, 46(4): 309–310.
  • Türkeş, M., Öztaş, T., Tercan, E., Erpul, G., Karagöz, A., Dengiz, O., Doğan, O., Şahin, K., Avcıoğlu, B., 2019. Desertification vulnerability and risk assessment for Turkey via an analytical hierarchy process model. Land Degradattion & Development, 31(2): 205-214.
  • Van Rompaey, A.J.J., Govers, G., Puttemans, C., 2002. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surface Processes and Landforms, 27(5): 481-494.
  • Wischmeier, W.H., Smith, D.D., 1958. Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39: 285-291.
  • Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses (No. 537). USDA Agricultural Service Handbook, Washington, D.C.
  • Xiong, Y., Wand, G., Teng, Y., Otsuki, K., 2013. Modeling the impacts of land use changes on soil erosion at the river watershed scale. Kyushu University Journal of the Faculty of Agriculture, 58(2): 377-387.
  • Yesuph, A.Y., Dagnew, A.B., 2019. Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Watershed, Ethiopia. Environmental Systems Research, 8(17): 1-21.
There are 40 citations in total.

Details

Primary Language English
Subjects Conservation and Improvement of Soil and Water Resources
Journal Section Research Article
Authors

Sevinç Madenoğlu 0000-0002-5012-2773

Melis Özge Pınar 0000-0002-4348-5541

Suat Şahin 0000-0002-9620-8265

Günay Erpul 0000-0002-3797-6969

Publication Date August 28, 2024
Submission Date February 9, 2024
Acceptance Date August 1, 2024
Published in Issue Year 2024

Cite

APA Madenoğlu, S., Pınar, M. Ö., Şahin, S., Erpul, G. (2024). Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale. Türkiye Tarımsal Araştırmalar Dergisi, 11(2), 176-190. https://doi.org/10.19159/tutad.1434369
AMA Madenoğlu S, Pınar MÖ, Şahin S, Erpul G. Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale. TÜTAD. August 2024;11(2):176-190. doi:10.19159/tutad.1434369
Chicago Madenoğlu, Sevinç, Melis Özge Pınar, Suat Şahin, and Günay Erpul. “Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale”. Türkiye Tarımsal Araştırmalar Dergisi 11, no. 2 (August 2024): 176-90. https://doi.org/10.19159/tutad.1434369.
EndNote Madenoğlu S, Pınar MÖ, Şahin S, Erpul G (August 1, 2024) Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale. Türkiye Tarımsal Araştırmalar Dergisi 11 2 176–190.
IEEE S. Madenoğlu, M. Ö. Pınar, S. Şahin, and G. Erpul, “Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale”, TÜTAD, vol. 11, no. 2, pp. 176–190, 2024, doi: 10.19159/tutad.1434369.
ISNAD Madenoğlu, Sevinç et al. “Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale”. Türkiye Tarımsal Araştırmalar Dergisi 11/2 (August 2024), 176-190. https://doi.org/10.19159/tutad.1434369.
JAMA Madenoğlu S, Pınar MÖ, Şahin S, Erpul G. Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale. TÜTAD. 2024;11:176–190.
MLA Madenoğlu, Sevinç et al. “Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 11, no. 2, 2024, pp. 176-90, doi:10.19159/tutad.1434369.
Vancouver Madenoğlu S, Pınar MÖ, Şahin S, Erpul G. Sustainable Land Management for Mitigating Soil Erosion at the Catchment Scale. TÜTAD. 2024;11(2):176-90.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667