Research Article
BibTex RIS Cite

Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids

Year 2024, , 331 - 337, 09.12.2024
https://doi.org/10.19159/tutad.1536278

Abstract

The global focus on enhancing sorghum [Sorghum bicolor (L.) Moench] for biomass-related traits is increasing due to its potential contribution to the growth and sustainability of the ethanol and biogas production chain. Heterosis has been widely used in sorghum breeding, especially in improving biomass yield using efficient crossing and selection methods. The objective of this study was to assess the heterosis potential of elite sorghum accessions. Ten hybrids were established using five reciprocal crosses of seven elite breeding accessions. The hybrids and the parental lines were significant of great variation for plant height (PH), panicle length (PL), number of leaves (NL), and stem diameter (SD). Most hybrids had high positive mid-parent heterosis for biomass-related traits, while better parental heterosis ranged from -7.90 to 31.16 for PH, 17.14 to 79.59 for PL, -39.68 to 13.20 NL, and -19.19 to 104.23% for SD. Four hybrids (P6×P4, P4×P6, P6×P5, and P5×P6) exhibited plant heights greater than the best parent (P5:322.33 cm). Reciprocal cross effects had a significant impact on PH and SD, with a wide range of -10.23 to 39.35% and -37.50 to 30.55%, respectively. The results indicated that heterosis could be come true for the characters of plant height, panicle length, and number of leaves, and stem diameter that contributes great impact on having high biomass.

References

  • Blum, A., Ramaiah, S., Kanemasu, E.T., 1990. The physiology of heterosis in sorghum with respect to environmental stress. Annals of Botany, 65(2): 149-158.
  • Bollam, S., Romana, K.K., Rayaprolu, L., Vemula, A., Das, R.R., Rathore, A., Gandham, P., Chander, G., Deshpande, S.P., Gupta, R., 2021. Nitrogen use efficiency in sorghum: Exploring native variability for traits under variable N-regimes. Frontiers in Plant Science, 12: 643192.
  • Bulant, C., Gallais, A., Matthys-Rochon, E., Prioul, J.L., 2000. Xenia effects in maize with normal endosperm: II. Kernel growth and enzyme activities during grain filling. Crop Science, 40(1): 182-189.
  • Chen, J., Zhu, M., Liu, R., Zhang, M., Lv, Y., Liu, Y., Xiao, X., Yuan, J., Cai, H., 2020. Biomass yield 1 regulates sorghum biomass and grain yield via the shikimate pathway. Journal of Experimental Botany, 71(18): 5506-5520.
  • Derese, S.A., Shimelis, H., Mwadzingeni, L., Laing, M., 2018. Agro-morphological characterisation and selection of sorghum landraces. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 68(7): 585-595.
  • Duraes, N.N.L., Nunes, J.A.R., Bruzi, A., Lombardi, G.M.R., Fagundes, T.G., Parrella, N., Schaffert, R.E., Parrella, R.A.C., 2021. Heterosis for ethanol yield and yield components in sweet sorghum. Sugar Tech, 23(2): 360-368.
  • Gai, J., He, J., 2013. Brenner’s Encyclopedia of Genetics. Netherlands, Elsevier.
  • Goma, L., Labe, D.A., Mani, H., 2021. Character association and path coefficient analysis in rainy season sorghum (Sorghum bicolor (L.) Moench) varieties at Samaru and Maigana Northern Guinea Savannah, Nigeria. Journal of Agriculture and Environment, 17(1): 87-98.
  • Gonzalo, M., Vyn, T.J., Holland, J.B., McIntyre, L.M., 2007. Mapping reciprocal effects and interactions with plant density stress in Zea mays L. Heredity, 99: 14-30.
  • Göler, M., Özyazıcı, M.A., 2024. Determination of yield and yield components of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] genotypes grown as a second crop. Ege Universitesi Ziraat Fakültesi Dergisi, 61(1): 87-102. (In Turkish).
  • Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9: 463-493.
  • Guden, B., Erdurmus, C., Erdal, S., Uzun, B., 2020. Evaluation of sweet sorghum genotypes for bioethanol yield and related traits. Biofuels, Bioproducts and Biorefining, 15(2): 545-562.
  • Habyarimana, E., De Franceschi, P., Ercisli, S., Baloch, F.S., Dall’Agata, M., 2020. Genome-wide association study for biomass related traits in a panel of Sorghum bicolor and S. bicolor × S. halepense populations. Frontiers in Plant Science, 11: 551305.
  • Jain, S.K., Elangovan, M., Patel, N.V., 2010. Correlation and path coefficient analysis for agronomical traits in forage sorghum [Sorghum bicolor (L.) Moench]. Indian Society of Plant Genetic Resources, 23(01): 15-18.
  • Lestari, R., Tyas, K.N., Rachmadiyanto, A.N., 2021. Response of biomass, grain production, and sugar content of four sorghum plant varieties (Sorghum bicolor (L.) Moench) to different plant densities. Open Agriculture, 6(1): 761-770.
  • Madhusudhana, R., Patil, J.V., 2013. A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica, 191: 259-268.
  • Mangena, P., Shimelis, H., Laing, M., 2022. Combining ability and heterosis of sweet stem sorghum genotypes for bioethanol yield and related traits. Euphytica, 218: 72.
  • Mohammed, R., Are, A.K., Bhavanasi, R., Munghate, R.S., Kavi Kishor, P.B., Sharma, H.C., 2015. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor. Frontiers in Plant Science, 6: 945.
  • Mohammed, R., Are, A.K., Munghate, R.S., Bhavanasi, R., Polavarapu, K.K.B., Sharma, H.C., 2016. Inheritance of resistance to sorghum shoot fly, atherigona soccata in sorghum, Sorghum bicolor (L.) Moench. Frontiers in Plant Science, 27(7): 543.
  • Packer, D.P., Rooney, W.L., 2014. High-parent heterosis for biomass yield in photoperiod-sensitive sorghum hybrids. Field Crops Research, 167: 153-158.
  • Paril, J., Reif, J., Fournier-Level, A., Pourkheirandish, M., 2023. Heterosis in crop improvement. The Plant Journal, 117(1): 23-32.
  • Quinby, J.R., Karper, R.E., 1954. Inheritance of height in sorghum. Agronomy Journal, 46: 211-216.
  • Seitz, G., Melchiger, A., Geiger, H., Singh, I., 1995. Reciprocal differences for forage traits in single and three-way crosses of maize. Plant Breeding, 114(1): 231-234.
  • Sprague, G.F., Tatum, L.A., 1942. General vs specific combining ability in single cross corn. Agronomy Journal, 34(10): 923-932.
  • Von Pinho, R.G., Silva, E.V.V., Oliveira, T.L., de Souza, V.F., de Menezes, C.B., 2022. Breeding sorghum for grain, forage and bioenergy in Brazil. Revista Brasileira de Milho e Sorgo, 21: e1275.
  • Wang, L., Hongdong, Y., Shaojie, J., Yanxi, J., Defeng, S., Guangquan, S., 2020. Heterosis prediction of sweet sorghum based on combining ability and genetic distance. Acta Agronomica Hungarica, 53(14): 2786-2794.
  • Yang, K.-W., Chapman, S., Carpenter, N., Hammer, G., McLean, G., Zheng, B., Chen, Y., Delp, E., Masjedi, A., Crawford, M., Ebert, D., Habib, A., Thompson, A., Weil, C., Tuinstra, M.R., 2021. Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. In Silico Plants, 3(1): diab001.
  • Zhang, Y., Chen, J., Gao, Z., Wang, H., Liang, D., Guo, Q., Zhang, X., Fan, X., Wu, Y., Liu, Q., 2024. Identification of heterosis and combining ability in the hybrids of male sterile and restorer sorghum [Sorghum bicolor (L.) Moench] lines. PLoS One, 19(1): e0296416.
  • Zhang, M., Li, N., He, W., Zhang, H., Yang, W., Liu, B., 2016. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. The Plant Journal, 85(3): 424-36.

Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids

Year 2024, , 331 - 337, 09.12.2024
https://doi.org/10.19159/tutad.1536278

Abstract

The global focus on enhancing sorghum [Sorghum bicolor (L.) Moench] for biomass-related traits is increasing due to its potential contribution to the growth and sustainability of the ethanol and biogas production chain. Heterosis has been widely used in sorghum breeding, especially in improving biomass yield using efficient crossing and selection methods. The objective of this study was to assess the heterosis potential of elite sorghum accessions. Ten hybrids were established using five reciprocal crosses of seven elite breeding accessions. The hybrids and the parental lines were significant of great variation for plant height (PH), panicle length (PL), number of leaves (NL), and stem diameter (SD). Most hybrids had high positive mid-parent heterosis for biomass-related traits, while better parental heterosis ranged from -7.90 to 31.16 for PH, 17.14 to 79.59 for PL, -39.68 to 13.20 NL, and -19.19 to 104.23% for SD. Four hybrids (P6×P4, P4×P6, P6×P5, and P5×P6) exhibited plant heights greater than the best parent (P5:322.33 cm). Reciprocal cross effects had a significant impact on PH and SD, with a wide range of -10.23 to 39.35% and -37.50 to 30.55%, respectively. The results indicated that heterosis could be come true for the characters of plant height, panicle length, and number of leaves, and stem diameter that contributes great impact on having high biomass.

References

  • Blum, A., Ramaiah, S., Kanemasu, E.T., 1990. The physiology of heterosis in sorghum with respect to environmental stress. Annals of Botany, 65(2): 149-158.
  • Bollam, S., Romana, K.K., Rayaprolu, L., Vemula, A., Das, R.R., Rathore, A., Gandham, P., Chander, G., Deshpande, S.P., Gupta, R., 2021. Nitrogen use efficiency in sorghum: Exploring native variability for traits under variable N-regimes. Frontiers in Plant Science, 12: 643192.
  • Bulant, C., Gallais, A., Matthys-Rochon, E., Prioul, J.L., 2000. Xenia effects in maize with normal endosperm: II. Kernel growth and enzyme activities during grain filling. Crop Science, 40(1): 182-189.
  • Chen, J., Zhu, M., Liu, R., Zhang, M., Lv, Y., Liu, Y., Xiao, X., Yuan, J., Cai, H., 2020. Biomass yield 1 regulates sorghum biomass and grain yield via the shikimate pathway. Journal of Experimental Botany, 71(18): 5506-5520.
  • Derese, S.A., Shimelis, H., Mwadzingeni, L., Laing, M., 2018. Agro-morphological characterisation and selection of sorghum landraces. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 68(7): 585-595.
  • Duraes, N.N.L., Nunes, J.A.R., Bruzi, A., Lombardi, G.M.R., Fagundes, T.G., Parrella, N., Schaffert, R.E., Parrella, R.A.C., 2021. Heterosis for ethanol yield and yield components in sweet sorghum. Sugar Tech, 23(2): 360-368.
  • Gai, J., He, J., 2013. Brenner’s Encyclopedia of Genetics. Netherlands, Elsevier.
  • Goma, L., Labe, D.A., Mani, H., 2021. Character association and path coefficient analysis in rainy season sorghum (Sorghum bicolor (L.) Moench) varieties at Samaru and Maigana Northern Guinea Savannah, Nigeria. Journal of Agriculture and Environment, 17(1): 87-98.
  • Gonzalo, M., Vyn, T.J., Holland, J.B., McIntyre, L.M., 2007. Mapping reciprocal effects and interactions with plant density stress in Zea mays L. Heredity, 99: 14-30.
  • Göler, M., Özyazıcı, M.A., 2024. Determination of yield and yield components of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] genotypes grown as a second crop. Ege Universitesi Ziraat Fakültesi Dergisi, 61(1): 87-102. (In Turkish).
  • Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9: 463-493.
  • Guden, B., Erdurmus, C., Erdal, S., Uzun, B., 2020. Evaluation of sweet sorghum genotypes for bioethanol yield and related traits. Biofuels, Bioproducts and Biorefining, 15(2): 545-562.
  • Habyarimana, E., De Franceschi, P., Ercisli, S., Baloch, F.S., Dall’Agata, M., 2020. Genome-wide association study for biomass related traits in a panel of Sorghum bicolor and S. bicolor × S. halepense populations. Frontiers in Plant Science, 11: 551305.
  • Jain, S.K., Elangovan, M., Patel, N.V., 2010. Correlation and path coefficient analysis for agronomical traits in forage sorghum [Sorghum bicolor (L.) Moench]. Indian Society of Plant Genetic Resources, 23(01): 15-18.
  • Lestari, R., Tyas, K.N., Rachmadiyanto, A.N., 2021. Response of biomass, grain production, and sugar content of four sorghum plant varieties (Sorghum bicolor (L.) Moench) to different plant densities. Open Agriculture, 6(1): 761-770.
  • Madhusudhana, R., Patil, J.V., 2013. A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica, 191: 259-268.
  • Mangena, P., Shimelis, H., Laing, M., 2022. Combining ability and heterosis of sweet stem sorghum genotypes for bioethanol yield and related traits. Euphytica, 218: 72.
  • Mohammed, R., Are, A.K., Bhavanasi, R., Munghate, R.S., Kavi Kishor, P.B., Sharma, H.C., 2015. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor. Frontiers in Plant Science, 6: 945.
  • Mohammed, R., Are, A.K., Munghate, R.S., Bhavanasi, R., Polavarapu, K.K.B., Sharma, H.C., 2016. Inheritance of resistance to sorghum shoot fly, atherigona soccata in sorghum, Sorghum bicolor (L.) Moench. Frontiers in Plant Science, 27(7): 543.
  • Packer, D.P., Rooney, W.L., 2014. High-parent heterosis for biomass yield in photoperiod-sensitive sorghum hybrids. Field Crops Research, 167: 153-158.
  • Paril, J., Reif, J., Fournier-Level, A., Pourkheirandish, M., 2023. Heterosis in crop improvement. The Plant Journal, 117(1): 23-32.
  • Quinby, J.R., Karper, R.E., 1954. Inheritance of height in sorghum. Agronomy Journal, 46: 211-216.
  • Seitz, G., Melchiger, A., Geiger, H., Singh, I., 1995. Reciprocal differences for forage traits in single and three-way crosses of maize. Plant Breeding, 114(1): 231-234.
  • Sprague, G.F., Tatum, L.A., 1942. General vs specific combining ability in single cross corn. Agronomy Journal, 34(10): 923-932.
  • Von Pinho, R.G., Silva, E.V.V., Oliveira, T.L., de Souza, V.F., de Menezes, C.B., 2022. Breeding sorghum for grain, forage and bioenergy in Brazil. Revista Brasileira de Milho e Sorgo, 21: e1275.
  • Wang, L., Hongdong, Y., Shaojie, J., Yanxi, J., Defeng, S., Guangquan, S., 2020. Heterosis prediction of sweet sorghum based on combining ability and genetic distance. Acta Agronomica Hungarica, 53(14): 2786-2794.
  • Yang, K.-W., Chapman, S., Carpenter, N., Hammer, G., McLean, G., Zheng, B., Chen, Y., Delp, E., Masjedi, A., Crawford, M., Ebert, D., Habib, A., Thompson, A., Weil, C., Tuinstra, M.R., 2021. Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. In Silico Plants, 3(1): diab001.
  • Zhang, Y., Chen, J., Gao, Z., Wang, H., Liang, D., Guo, Q., Zhang, X., Fan, X., Wu, Y., Liu, Q., 2024. Identification of heterosis and combining ability in the hybrids of male sterile and restorer sorghum [Sorghum bicolor (L.) Moench] lines. PLoS One, 19(1): e0296416.
  • Zhang, M., Li, N., He, W., Zhang, H., Yang, W., Liu, B., 2016. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. The Plant Journal, 85(3): 424-36.
There are 29 citations in total.

Details

Primary Language English
Subjects Crop and Pasture Breeding
Journal Section Research Article
Authors

Birgul Guden 0000-0002-7375-6533

Bülent Uzun 0000-0001-6228-9629

Publication Date December 9, 2024
Submission Date August 20, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2024

Cite

APA Guden, B., & Uzun, B. (2024). Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids. Türkiye Tarımsal Araştırmalar Dergisi, 11(3), 331-337. https://doi.org/10.19159/tutad.1536278
AMA Guden B, Uzun B. Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids. TÜTAD. December 2024;11(3):331-337. doi:10.19159/tutad.1536278
Chicago Guden, Birgul, and Bülent Uzun. “Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum Bicolor (L.) Moench] F1 Reciprocal Hybrids”. Türkiye Tarımsal Araştırmalar Dergisi 11, no. 3 (December 2024): 331-37. https://doi.org/10.19159/tutad.1536278.
EndNote Guden B, Uzun B (December 1, 2024) Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids. Türkiye Tarımsal Araştırmalar Dergisi 11 3 331–337.
IEEE B. Guden and B. Uzun, “Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids”, TÜTAD, vol. 11, no. 3, pp. 331–337, 2024, doi: 10.19159/tutad.1536278.
ISNAD Guden, Birgul - Uzun, Bülent. “Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum Bicolor (L.) Moench] F1 Reciprocal Hybrids”. Türkiye Tarımsal Araştırmalar Dergisi 11/3 (December 2024), 331-337. https://doi.org/10.19159/tutad.1536278.
JAMA Guden B, Uzun B. Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids. TÜTAD. 2024;11:331–337.
MLA Guden, Birgul and Bülent Uzun. “Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum Bicolor (L.) Moench] F1 Reciprocal Hybrids”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 11, no. 3, 2024, pp. 331-7, doi:10.19159/tutad.1536278.
Vancouver Guden B, Uzun B. Evaluation of Heterosis in Biomass Related Traits in Sorghum [Sorghum bicolor (L.) Moench] F1 Reciprocal Hybrids. TÜTAD. 2024;11(3):331-7.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667