Review
BibTex RIS Cite

Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S)

Year 2018, , 176 - 182, 30.06.2018
https://doi.org/10.19159/tutad.392683

Abstract

Hidrojen sülfür (H2S) renksiz oluşu ve çürük yumurta kokusu ile yıllardır toksik olarak bilinen bir gazdır. Hidrojen sülfürün bitki hücreleri üzerindeki etkisi yüksek konsantrasyonda olmasına bağlı olarak diğer çevresel stres koşulları ile birleştiğinde bitki için fitotoksik hale gelmektedir. Hidrojen sülfürün bitkilerde stoma hareketleri, çiçeklerde ve yapraklarda yaşlılığın düzenlenmesi, fotosentez ve çimlenme gibi çeşitli fizyolojik olaylar üzerine önemli etkisi bulunmaktadır. Ağır metal içeriği, kuraklık, su taşkını,
tuz, mantari enfeksiyonlar, UV-B artışı, soğuk ve sıcak stresi gibi çeşitli abiyotik stres koşulları H
2S’ün içsel sentezini tetiklemektedir. Bitkiler çevresel streslere tepki olarak hidrojen sülfürü L-sistein desülfidraz (LCD), D-sistein desülfidraz (DCD), sülfat redüktaz (SİR), siyanoalanin sentez (CAS) ve sistein sentezi (CS) yoluyla sentezlemektedir ve bu stres koşullarına karşı bitkinin toleransını artırmaktadır. Bitkiler tarafından üretilen hidrojen sülfürün
fazlası da atmosfere verilmektedir. Bu nedenle, H
2S'ü bir fitotoksin olmasının yanı sıra sinyal molekülü
olarak ta düşünmek
gerekmektedir.

References

  • Anonymous, 2013. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Cambridge, UK.
  • Becklin, K.M., Anderson, J.T., Gerhart, L.M., Wadgymar, S.M., Wessinger, C.A., Ward, J.K., 2016. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 172(2): 635-649.
  • Bharwana, S.A., Ali, S., Farooq, M.A., Ali, B., Iqbal, N., Abbas, F., Ahmad, M.S.A., 2014. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environmental Science and Pollution Research, 21(1): 717-731.
  • Calderwood, A., Kopriva, S., 2014. Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxide, 41: 72-78.
  • Chen, X., Chen, Q., Zhang, X., Li, R., Jia, Y., Ef, A.A., Jia, A., Hu, L., Hu, X., 2016. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiology and Biochemistry, 104: 174-179.
  • Cheng, W., Zhang, L., Jiao, C.J., Su, M., Yang, T., Zhou, L.N., Peng, R., Wang, R., Wang, C., 2013. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiology and Biochemistry, 70: 278-286.
  • Çengel, Y., 2015. Jeotermal enerjinin çevre ve sağlık etkileri. Adnan Menderes Üniversitesi Rektörlüğü Jeotermal Enerji Araştırma ve Uygulama Merkezi Yayınları, 2: 1-10.
  • Da-Silva, C.J., Modolo, L.V., 2018. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Botanica Brasilica, 32(1): 150-160.
  • De Kok, L.J., Bosma, W., Maas, F.M., Kuiper, P.J.C., 1985 The effect of short-term H2S fumigation on water-soluble sulphydryl and glutathione levels in spinach. Plant, Cell and Environment, 8: 189-194.
  • Hällgren, J.E., Fredriksson, S.A., 1982. Emission of hydrogen sulfide from sulfur dioxide-fumigated pine trees. Plant Physiology, 70(2): 456-459.
  • Jin, Z., Pei, Y., 2015. Physiological implications of hydrogen sulfide in plants: Pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 397502, doi:10.1155/2015/ 397502.
  • Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., Pei, Y., 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 414(3): 481-486.
  • Lai, D., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui, W., Xie, Y., 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science, 225: 117-129.
  • Li, Z.G., Min, X., Zhou, Z.H., 2016a. Hydrogen sulfide: a signal molecule in plant cross-adaptation. Frontiers in Plant Science, 7: 1621.
  • Li, Q., Wang, Z., Zhao, Y., Zhang, X.C., Zhang, S.J., Bo, LT., Wang, Y., Ding, Y.F., An, L.Z., 2016b. Putrescine protects hulless barley from damage due toUV-B stress via H2S-and H2O2-mediated signaling pathways. Plant Cell Reports, 35(5): 1155-1168.
  • Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M., Hancock, J.T., 2013. Hydrogene sulfide: environmental factor or signaling molecule? Plant Cell and Environment, 36(9): 1607-1616.
  • Mostofa, M.G., Rahman, A., Ansary, M.M.U., Watanabe, A., Fujita, M., Tran, L.P., 2015. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 5: 14078.
  • Mutia, T., Jónsdóttir, I.S., Friğriksson, Ş., 2013. Air quality and plant eco-physiological responses around geothermal power plants in Iceland and Kenya. Geotermal Research Council Transactions, 37: 805-810.
  • Pandey, S., 2014. Hydrogen sulfide: A new node in the abscisic acid-dependent guard cell signaling network? Plant Physiology, 166: 1680-1681.
  • Sekiya J., Schmidt A., Rennenberg H., Wilson L.G., Filner P., 1982. Hydro-gen sulfide emission by cucumber leaves in response to sulfate in light anddark. Phytochemistry, 21: 2173-2178.
  • Shi, H., Ye, T., Chan, Z., 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry, 71: 226-234.
  • Wang, R., 2012. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiological Reviews, 92(2): 791-896.
  • Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P., 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. Journal of Integrative Plant Biology, 50(12): 1518-1529.
  • Zhang, H., Tan, Z.Q., Hu, L.Y., Wang, S.H., Luo, J.P., Jones, R.L., 2010. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology, 52(6): 556- 567.
  • Zhang, H., Tang, J., Liu, X.P., Wang, Y., Yu, W., Peng, W.Y., Fang, F., Ma, D.F., Wei, Z.J., Hu, L.Y., 2009a. Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51(12): 1084-1092.
  • Zhang, H., Ye, Y.K., Wang, S.H., Luo, J., Tang, J., Ma, D.F., 2009b. Hydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regulation, 58(3): 243-250.

Signal Molecule Hydrogen Sulfide (H2S) in Plants

Year 2018, , 176 - 182, 30.06.2018
https://doi.org/10.19159/tutad.392683

Abstract

Hydrogen sulfide (H2S) is a gas known as toxic for years with the colorless formation and rotten egg odor. Hydrogen sulfide becomes phytotoxic for the plant when combined with other environmental stress conditions due to the high concentration of the effect on plant cells.
Hydrogen sulfide plays a vital role in regulating various physiological processes such as stoma movements
in plants, regulation of senescence in flowers
and leaves, photosynthesis and germination. Various abiotic stress conditions such as heavy metal stress,
drought, waterlogging, salinity, fungal infection, UV-B stress, cold and heat stress triggers the production of H
2S. In response to environmental stresses, plants synthesize hydrogen sulfide via L-cysteine desulfhydrase (LCD), D-cysteine desulfhydrase (DCD), sulfate reductase (SIR), cyanoalanine synthesis (CAS) and cysteine synthesis (CS) and increase plant tolerance against these stress. Hydrogen sulfide produced by plants is also released to the atmosphere. For this reason, it is necessary to consider
H
2S as a signal
molecule
as well as a phytotoxin.

References

  • Anonymous, 2013. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Cambridge, UK.
  • Becklin, K.M., Anderson, J.T., Gerhart, L.M., Wadgymar, S.M., Wessinger, C.A., Ward, J.K., 2016. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 172(2): 635-649.
  • Bharwana, S.A., Ali, S., Farooq, M.A., Ali, B., Iqbal, N., Abbas, F., Ahmad, M.S.A., 2014. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environmental Science and Pollution Research, 21(1): 717-731.
  • Calderwood, A., Kopriva, S., 2014. Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxide, 41: 72-78.
  • Chen, X., Chen, Q., Zhang, X., Li, R., Jia, Y., Ef, A.A., Jia, A., Hu, L., Hu, X., 2016. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiology and Biochemistry, 104: 174-179.
  • Cheng, W., Zhang, L., Jiao, C.J., Su, M., Yang, T., Zhou, L.N., Peng, R., Wang, R., Wang, C., 2013. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiology and Biochemistry, 70: 278-286.
  • Çengel, Y., 2015. Jeotermal enerjinin çevre ve sağlık etkileri. Adnan Menderes Üniversitesi Rektörlüğü Jeotermal Enerji Araştırma ve Uygulama Merkezi Yayınları, 2: 1-10.
  • Da-Silva, C.J., Modolo, L.V., 2018. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Botanica Brasilica, 32(1): 150-160.
  • De Kok, L.J., Bosma, W., Maas, F.M., Kuiper, P.J.C., 1985 The effect of short-term H2S fumigation on water-soluble sulphydryl and glutathione levels in spinach. Plant, Cell and Environment, 8: 189-194.
  • Hällgren, J.E., Fredriksson, S.A., 1982. Emission of hydrogen sulfide from sulfur dioxide-fumigated pine trees. Plant Physiology, 70(2): 456-459.
  • Jin, Z., Pei, Y., 2015. Physiological implications of hydrogen sulfide in plants: Pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 397502, doi:10.1155/2015/ 397502.
  • Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., Pei, Y., 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 414(3): 481-486.
  • Lai, D., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui, W., Xie, Y., 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science, 225: 117-129.
  • Li, Z.G., Min, X., Zhou, Z.H., 2016a. Hydrogen sulfide: a signal molecule in plant cross-adaptation. Frontiers in Plant Science, 7: 1621.
  • Li, Q., Wang, Z., Zhao, Y., Zhang, X.C., Zhang, S.J., Bo, LT., Wang, Y., Ding, Y.F., An, L.Z., 2016b. Putrescine protects hulless barley from damage due toUV-B stress via H2S-and H2O2-mediated signaling pathways. Plant Cell Reports, 35(5): 1155-1168.
  • Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M., Hancock, J.T., 2013. Hydrogene sulfide: environmental factor or signaling molecule? Plant Cell and Environment, 36(9): 1607-1616.
  • Mostofa, M.G., Rahman, A., Ansary, M.M.U., Watanabe, A., Fujita, M., Tran, L.P., 2015. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 5: 14078.
  • Mutia, T., Jónsdóttir, I.S., Friğriksson, Ş., 2013. Air quality and plant eco-physiological responses around geothermal power plants in Iceland and Kenya. Geotermal Research Council Transactions, 37: 805-810.
  • Pandey, S., 2014. Hydrogen sulfide: A new node in the abscisic acid-dependent guard cell signaling network? Plant Physiology, 166: 1680-1681.
  • Sekiya J., Schmidt A., Rennenberg H., Wilson L.G., Filner P., 1982. Hydro-gen sulfide emission by cucumber leaves in response to sulfate in light anddark. Phytochemistry, 21: 2173-2178.
  • Shi, H., Ye, T., Chan, Z., 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry, 71: 226-234.
  • Wang, R., 2012. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiological Reviews, 92(2): 791-896.
  • Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P., 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. Journal of Integrative Plant Biology, 50(12): 1518-1529.
  • Zhang, H., Tan, Z.Q., Hu, L.Y., Wang, S.H., Luo, J.P., Jones, R.L., 2010. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology, 52(6): 556- 567.
  • Zhang, H., Tang, J., Liu, X.P., Wang, Y., Yu, W., Peng, W.Y., Fang, F., Ma, D.F., Wei, Z.J., Hu, L.Y., 2009a. Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51(12): 1084-1092.
  • Zhang, H., Ye, Y.K., Wang, S.H., Luo, J., Tang, J., Ma, D.F., 2009b. Hydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regulation, 58(3): 243-250.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

İlkay Yavaş 0000-0002-6863-9631

Aydın Ünay 0000-0002-7278-4428

Publication Date June 30, 2018
Published in Issue Year 2018

Cite

APA Yavaş, İ., & Ünay, A. (2018). Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S). Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 176-182. https://doi.org/10.19159/tutad.392683
AMA Yavaş İ, Ünay A. Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S). TÜTAD. June 2018;5(2):176-182. doi:10.19159/tutad.392683
Chicago Yavaş, İlkay, and Aydın Ünay. “Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S)”. Türkiye Tarımsal Araştırmalar Dergisi 5, no. 2 (June 2018): 176-82. https://doi.org/10.19159/tutad.392683.
EndNote Yavaş İ, Ünay A (June 1, 2018) Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S). Türkiye Tarımsal Araştırmalar Dergisi 5 2 176–182.
IEEE İ. Yavaş and A. Ünay, “Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S)”, TÜTAD, vol. 5, no. 2, pp. 176–182, 2018, doi: 10.19159/tutad.392683.
ISNAD Yavaş, İlkay - Ünay, Aydın. “Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S)”. Türkiye Tarımsal Araştırmalar Dergisi 5/2 (June 2018), 176-182. https://doi.org/10.19159/tutad.392683.
JAMA Yavaş İ, Ünay A. Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S). TÜTAD. 2018;5:176–182.
MLA Yavaş, İlkay and Aydın Ünay. “Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 5, no. 2, 2018, pp. 176-82, doi:10.19159/tutad.392683.
Vancouver Yavaş İ, Ünay A. Bitkilerde Sinyal Molekülü Hidrojen Sülfür (H2S). TÜTAD. 2018;5(2):176-82.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667