BibTex RIS Cite

Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar

Year 2015, Volume: 2 Issue: 2, 135 - 148, 30.09.2015
https://doi.org/10.19159/tutad.10042

Abstract

Tarımda kullanılan kimyasal pestisidlerin neden olduğu çevre kirliliği ve kalıntı sorunları gibi nedenlerden dolayı, bitki hastalıklarıyla mücadelede alternatif yöntemlerin bulunması bir zorunluluk haline gelmiştir. Biyolojik mücadele kimyasal mücadeleye alternatif olarak geliştirilmiştir. Trichoderma’lar biyolojik mücadelede en çok kullanılan antagonistler olarak bilinmektedir. Doğada hemen hemen tüm toprak ve doğal habitatlarda ve özellikle organik madde içeren alanlarda bulunmaktadır. Bitki patojenlerine karşı mikoparazitizm, antibiyotik üretimi, yer-besin için yarışma ve bitkide gelişimi teşvik etme şeklindeki mekanizmaları kullanmaktadır. Günümüzde üzerinde en fazla araştırma yapılan konulardan biri haline gelmiştir. Bununla birlikte çok sayıda ticari preparat geliştirilip, bitki patolenlerine karşı kullanılmaktadır. Bu makalede, Trichoderma’nın bitki hastalıklarıyla mücadeledeki önemi, antagonistik özellikleri, etki mekanizmaları üzerinde durulmuş ve bu konu ile ilgili Türkiye’de ve Dünya’da yapılan bazı çalışmalardan örnekler verilmiştir.

References

  • Ahmad, J.S., Baker, R., 1987. Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77: 182-189.
  • Antal, Z., Manczinger, G., Szakács, R., Tengerdy, P., Ferenczy, L., 2000. Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycology Research, 104: 545-549.
  • Aydın, M.H., Turhan, G., 2009. Rhizoctonia solani’nin fungal antagonistlerinin belirlenmesi üzerinde araştırmalar. Anadolu Journal of Aegean Agricultural Research Institute, 19(2): 49-72.
  • Aydın, M.H., Turhan, G., 2013. Patateste Rhizoctonia solani’ye karşı Trichoderma türlerinin etkinliği ve bazı fungisitlerle birlikte kullanılması. Anadolu Journal of Aegean Agricultural Research Institute, 23(1): 12-30.
  • Bae, H., Sicher, R.C., Kim, M.S., Kim, S.H., Strem, M.D., MeInice, R.L., Bailey, B.A., 2009. The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60: 3279-3295.
  • Benítez,T., Rey, M., Delgado-Jarana, J., Rincón, A.M., Limón, M.C., 2000. Improvement of Tricoderma strains for biocontrol. Revista Iberoamericana de Micologia, 17(1): 31-36.
  • Boosalis, M.G., Scharen, A.L., 1959. Methods for microscopic detection of Aphaanomyces euteiches and Rhizoctonia solani and for isolation of Rhizoctonia solani associated with plant debris. Phytopathology, 49: 192-198.
  • Bora, T., Özaktan, H., 1998. Bitki Hastalıklarıyla Biyolojik Savaş. Prizma Matbaası, İzmir.
  • Çeliker, N.M., Nemli, T., 1994. Investigation on biocontrol of white root rot [Rosellinia necatrix (Hartig)] Berlese. Türkiye III. Biyolojik Mücadele Kongresi, 25-28 Ocak, İzmir, s. 110-115.
  • Danielson, R.M., Davey, C.B., 1973. The abudance of Trichoderma propagules and the distribution of species in forest soils. Soil Biology and Biochemistry, 5: 484-495.
  • Delen, N., 1991. Patojenlerin fungisitlere dayanıklılık sorunu. TYUAP Ege-Marmara Dilimi, ABAV Toplantısı, 12-14 Mart, Menemen/İzmir.
  • Di Petro, A., Lorita, M., Hayes, C.K., Broadway, R.M., Harman, G.E., 1993. Endochitinase from Gliocladium virens: Isolation, characterization , and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83: 308-313.
  • Howell, C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Diseaase, 87(1): 4-10.
  • Dickinson, J.M., Hanson, J.R., Hitcheook, P.B., Clydon, N., 1989. Structure and biosentesis of harzianopyridone an antifungal metabolite of T. harzianum. Journal of Chemical Society, Chemical Communications, 1: 1885-1887.
  • Djonovic, S., Vittone, G., Herrera, A.M., Kenerley, C.M., 2007. Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6- glucanase genes. Molecular Plant Pathology, 8(4): 469-480.
  • Druzhinina, I., Kubicek, C.P., 2005. Species concepts and biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University Science B, 6(2): 100-112.
  • Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I., Kubicek, C.P., 2011. Trichoderma-The genomics of opportunistic success. Nature Reviews Microbiology, 9: 749-759.
  • Elad, Y., Barak, R., Chet, I., Heris, Y., 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. Phytopathology, 107(2): 168-175.
  • Elad, Y., Chet, I., Katan, J., 1981. Tricoderma harzianum A. biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70: 119-121.
  • Elad, Y., Kapat, A., 1999. The rol of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal Plant Pathology, 105: 177-189.
  • Evans, H.C., Holmes, K.A., Thomas, S.E., 2003. Mycobiota of an indigenous Theobroma species (Sterculiaceae) in Ecuador: Assessing its potential for biological control of cocoa diseases. Mycological Progress, 2: 149-160.
  • Ghisalberti, E.L., Sivasithamparam, K., 1991. Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry, 23: 1011-1020.
  • Gibbs, J.N., 1967. A study of the epiphytic growth habit of Fomes annosus. Annals of Botany, 31(4): 755- 774.
  • Grosch, R., Lottmann, J., Rehn, V.N.C., Rehn, K.G., Mendonça-Hagler, L., Small, K., Berg, G., 2007. Analysis of antagonistic interactions between Trichoderma isolates from Brazilian weeds and the soil-borne pathogen Rhizoctonia solani. Journal of Plant Diseases and Protection, 114(4): 167-175.
  • Harman, G.E., 2000. Myths and dogmas of biocontrol: Changes in perceptions derived from research on T. harzianum T-22. Plant Diseases, 84: 377-393.
  • Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2: 43-56. species
  • Howell, C.R., Stipanovic, R.D., 1983. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology, 29(3): 321-324.
  • Hubbard, J.P., Harman, G.E., Hadar, Y., 1983. Effect of soilborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology, 73(5): 655-659.
  • İren, S., Maden, S., Katırcıoğlu, Y.Z., Erzurum, K., 1988. Trichoderma species determined in Turkey. The Journal of Turkish Phytopathology, 17(3): 107.
  • Jaakkola, M.S., Latitinen, S., Piipari, R., Uitti, J., Nordman, H., Haapala, A.M., Jaakkola, J.J., 2002. Immunoglobulin G antibodies against indoor dampness-related microbes and adult-onset asthma: A population-based incident case-control study. Clinical Experimental Immunology, 129:107-112.
  • Jackson, A.M., Whipps, J.M., Lynch, J.M., 1991. In vitro screening for identification of potential biocontrol agents of Allium white rot. Mycological Research, 95(4): 430-434.
  • Jin, X., Custis, D., 2011. Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56: 202-208.
  • Kay, S.J., Stewart, A., 1994. The effect of fungicides on fungal antagonisms of onion white rot and selection of dicarboximide-resistant biotypes. Plant Pathology, 43(5): 863-871.
  • Kredics, L., Antal, Z., Manczinger, L., Szekeres, A., Kevei, F., Nagy, E., 2003. Trichderma strains with biocontrol potential. Food Technology and Biotechnology, 41(1): 37-42.
  • Kubicek, C.P., Messner, R., Gruber, F., Mach, R.L., Kubicek-Pranz, E.M., 1993. The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus. Enzyme Microbial Technolgy, 15: 90-99.
  • Lieckfeldt, E., Kuhls, K., Muthumeenakshi, M., 1998. Molecular taxonomy of Trichoderma and Gliocladium and their teleomorphs. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, Vol 1, Basic Biology, Taxonomy and Genetics. Taylor & Francis, London, pp. 35-74.
  • Lifshitz, R., Windham, M.T., Baker, R., 1986. Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology, 76: 720-725.
  • Lorita, M., Woo, S.L., Fernandez, I.G., Collucci, G., Harman, G.E., Pintor-Toros, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S., Scala, F., 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of National Academy of Sciences, 95: 7860-7865.
  • Mastouri, F., Björkman, T., Harman, G.E., 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11): 1213-1221.
  • Naár, Z., Keeskés, M., 1998. Factors influencing the competitive saprophytic ability of Trichoderma species. Microbiological Research, 153(2): 119-129.
  • Papavizas, G.C., 1985. Trichoderma and giocladium: Biology, ecology, and potential for biocontrol. Annual Review Phytopathology, 23: 23-54.
  • Papavizas, G.C., Dunn, M.T., Lewis, J.A., Beagle- Ristaino, J., 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology, 74: 1171-1175.
  • Réczey, K., Szengyel, R., Zacchi, G., 1996. Cellulase production by T-reesei. Bioresource Technology, 57: 25-30.
  • Samuels, G.J., 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96(2): 195-206.
  • Samuels, G.J., Petrino, O., Kuhls, K., Lieckfeldt, E., Kubicek, CP., 1998. The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Studies in Mycology, 41: 1-54.
  • Santamarina, M.P., Rosellό, J., 2006. Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Protection, 25: 1130-1134.
  • Tang, P., Mohan, S., Sigler, L., Witterick, I., Summerbell, R., Campbell, I., Mazzulli, T., 2003. Allergic fungal sinusitis associated with Trichoderma longibrachiatum. Journal of Clinical Microbiology, 41(11): 5333-5336.
  • Turak, S., 1997. Erzincan ili fasulye ekim alanlarında kök çürüklüğü oluşturan fungal etmenlerin belirlenmesi ve bunların bazı fasülye çeşitlerinde patojeniteleri ile antagonist Trichoderma türleri ile etkileşimlerinin incelenmesi. www.erzincanbk. gov.tr/sb32.htm (Erişim tarihi: 01.05.2015).
  • Turhan, G., 1973. Fungi isolated from the roots of diseased vegetable seedlings. Journal of Turkish Phytopathology, 2: 100-112.
  • Vinale, F., Marra, R., Scala, F., Ghisalberti, E.L., Lorita, M., Sivasithamparam, K., 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43: 143-148.
  • Weindling, R., 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22: 837- 845.
  • Weindling, R., 1934. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24: 1153-1179.
  • Weindling, R., 1941. Experimental consideration of the mold toxin of Gliocladium and Trichoderma. Phytopathology, 31: 991-1003.
  • Widden, P., Abitbol, J.J., 1980. Seasonality of Trichoderma species in a spruce forest soil. Mycologia, 72: 775-784.
  • Windham, M.T., Elad, Y., Baker, R., 1986. A mechanism for increased plant-growth induced by Trichoderma spp. Phytopathology, 76(5): 518-521.
  • Yedidia, I., Benhamou, N., Chet, I., 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrolagent Trichoderma harzianum. Microbiolgy, 65: 1061-1070.
  • Yedidia, I., Srivastva, A.K., Kapulnik, Y., Chet, I., 2001. Effecet of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil, 235: 235-242.
Year 2015, Volume: 2 Issue: 2, 135 - 148, 30.09.2015
https://doi.org/10.19159/tutad.10042

Abstract

Chemical pectisides used in agricultural cause both environmental pollution and pectiside residues. So there is a necessity of alternative methods in the struggle against plant diseases. Biological control has been developed as an alternative to chemical control and used increasingly in recent years. Trichoderma is known as the most widely used antagonists in biological control and has almost all the land and natural habitats in nature especially in areas containing organic substance. The advantages for the associated plant include the suppression of pathogens by using a variety of mechanisms (i.e., antibiosis, parasitism, competition for nutrients, etc.), the promotion of plant growth and the improvement of host resistance to both biotic and abiotic stresses. Therefore, scientists have made most research on this topic and developed many commercial products to be applied against plant pathogens. In this article, It is highlighted the importance of Trichoderma against plant diseases and how to use mechanisms of action. Also some scientific article reviewed both in Turkey and in the World and given some example related to this topic

References

  • Ahmad, J.S., Baker, R., 1987. Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77: 182-189.
  • Antal, Z., Manczinger, G., Szakács, R., Tengerdy, P., Ferenczy, L., 2000. Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycology Research, 104: 545-549.
  • Aydın, M.H., Turhan, G., 2009. Rhizoctonia solani’nin fungal antagonistlerinin belirlenmesi üzerinde araştırmalar. Anadolu Journal of Aegean Agricultural Research Institute, 19(2): 49-72.
  • Aydın, M.H., Turhan, G., 2013. Patateste Rhizoctonia solani’ye karşı Trichoderma türlerinin etkinliği ve bazı fungisitlerle birlikte kullanılması. Anadolu Journal of Aegean Agricultural Research Institute, 23(1): 12-30.
  • Bae, H., Sicher, R.C., Kim, M.S., Kim, S.H., Strem, M.D., MeInice, R.L., Bailey, B.A., 2009. The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60: 3279-3295.
  • Benítez,T., Rey, M., Delgado-Jarana, J., Rincón, A.M., Limón, M.C., 2000. Improvement of Tricoderma strains for biocontrol. Revista Iberoamericana de Micologia, 17(1): 31-36.
  • Boosalis, M.G., Scharen, A.L., 1959. Methods for microscopic detection of Aphaanomyces euteiches and Rhizoctonia solani and for isolation of Rhizoctonia solani associated with plant debris. Phytopathology, 49: 192-198.
  • Bora, T., Özaktan, H., 1998. Bitki Hastalıklarıyla Biyolojik Savaş. Prizma Matbaası, İzmir.
  • Çeliker, N.M., Nemli, T., 1994. Investigation on biocontrol of white root rot [Rosellinia necatrix (Hartig)] Berlese. Türkiye III. Biyolojik Mücadele Kongresi, 25-28 Ocak, İzmir, s. 110-115.
  • Danielson, R.M., Davey, C.B., 1973. The abudance of Trichoderma propagules and the distribution of species in forest soils. Soil Biology and Biochemistry, 5: 484-495.
  • Delen, N., 1991. Patojenlerin fungisitlere dayanıklılık sorunu. TYUAP Ege-Marmara Dilimi, ABAV Toplantısı, 12-14 Mart, Menemen/İzmir.
  • Di Petro, A., Lorita, M., Hayes, C.K., Broadway, R.M., Harman, G.E., 1993. Endochitinase from Gliocladium virens: Isolation, characterization , and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83: 308-313.
  • Howell, C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Diseaase, 87(1): 4-10.
  • Dickinson, J.M., Hanson, J.R., Hitcheook, P.B., Clydon, N., 1989. Structure and biosentesis of harzianopyridone an antifungal metabolite of T. harzianum. Journal of Chemical Society, Chemical Communications, 1: 1885-1887.
  • Djonovic, S., Vittone, G., Herrera, A.M., Kenerley, C.M., 2007. Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6- glucanase genes. Molecular Plant Pathology, 8(4): 469-480.
  • Druzhinina, I., Kubicek, C.P., 2005. Species concepts and biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University Science B, 6(2): 100-112.
  • Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I., Kubicek, C.P., 2011. Trichoderma-The genomics of opportunistic success. Nature Reviews Microbiology, 9: 749-759.
  • Elad, Y., Barak, R., Chet, I., Heris, Y., 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. Phytopathology, 107(2): 168-175.
  • Elad, Y., Chet, I., Katan, J., 1981. Tricoderma harzianum A. biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70: 119-121.
  • Elad, Y., Kapat, A., 1999. The rol of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal Plant Pathology, 105: 177-189.
  • Evans, H.C., Holmes, K.A., Thomas, S.E., 2003. Mycobiota of an indigenous Theobroma species (Sterculiaceae) in Ecuador: Assessing its potential for biological control of cocoa diseases. Mycological Progress, 2: 149-160.
  • Ghisalberti, E.L., Sivasithamparam, K., 1991. Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry, 23: 1011-1020.
  • Gibbs, J.N., 1967. A study of the epiphytic growth habit of Fomes annosus. Annals of Botany, 31(4): 755- 774.
  • Grosch, R., Lottmann, J., Rehn, V.N.C., Rehn, K.G., Mendonça-Hagler, L., Small, K., Berg, G., 2007. Analysis of antagonistic interactions between Trichoderma isolates from Brazilian weeds and the soil-borne pathogen Rhizoctonia solani. Journal of Plant Diseases and Protection, 114(4): 167-175.
  • Harman, G.E., 2000. Myths and dogmas of biocontrol: Changes in perceptions derived from research on T. harzianum T-22. Plant Diseases, 84: 377-393.
  • Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2: 43-56. species
  • Howell, C.R., Stipanovic, R.D., 1983. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology, 29(3): 321-324.
  • Hubbard, J.P., Harman, G.E., Hadar, Y., 1983. Effect of soilborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology, 73(5): 655-659.
  • İren, S., Maden, S., Katırcıoğlu, Y.Z., Erzurum, K., 1988. Trichoderma species determined in Turkey. The Journal of Turkish Phytopathology, 17(3): 107.
  • Jaakkola, M.S., Latitinen, S., Piipari, R., Uitti, J., Nordman, H., Haapala, A.M., Jaakkola, J.J., 2002. Immunoglobulin G antibodies against indoor dampness-related microbes and adult-onset asthma: A population-based incident case-control study. Clinical Experimental Immunology, 129:107-112.
  • Jackson, A.M., Whipps, J.M., Lynch, J.M., 1991. In vitro screening for identification of potential biocontrol agents of Allium white rot. Mycological Research, 95(4): 430-434.
  • Jin, X., Custis, D., 2011. Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56: 202-208.
  • Kay, S.J., Stewart, A., 1994. The effect of fungicides on fungal antagonisms of onion white rot and selection of dicarboximide-resistant biotypes. Plant Pathology, 43(5): 863-871.
  • Kredics, L., Antal, Z., Manczinger, L., Szekeres, A., Kevei, F., Nagy, E., 2003. Trichderma strains with biocontrol potential. Food Technology and Biotechnology, 41(1): 37-42.
  • Kubicek, C.P., Messner, R., Gruber, F., Mach, R.L., Kubicek-Pranz, E.M., 1993. The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus. Enzyme Microbial Technolgy, 15: 90-99.
  • Lieckfeldt, E., Kuhls, K., Muthumeenakshi, M., 1998. Molecular taxonomy of Trichoderma and Gliocladium and their teleomorphs. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, Vol 1, Basic Biology, Taxonomy and Genetics. Taylor & Francis, London, pp. 35-74.
  • Lifshitz, R., Windham, M.T., Baker, R., 1986. Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology, 76: 720-725.
  • Lorita, M., Woo, S.L., Fernandez, I.G., Collucci, G., Harman, G.E., Pintor-Toros, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S., Scala, F., 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of National Academy of Sciences, 95: 7860-7865.
  • Mastouri, F., Björkman, T., Harman, G.E., 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11): 1213-1221.
  • Naár, Z., Keeskés, M., 1998. Factors influencing the competitive saprophytic ability of Trichoderma species. Microbiological Research, 153(2): 119-129.
  • Papavizas, G.C., 1985. Trichoderma and giocladium: Biology, ecology, and potential for biocontrol. Annual Review Phytopathology, 23: 23-54.
  • Papavizas, G.C., Dunn, M.T., Lewis, J.A., Beagle- Ristaino, J., 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology, 74: 1171-1175.
  • Réczey, K., Szengyel, R., Zacchi, G., 1996. Cellulase production by T-reesei. Bioresource Technology, 57: 25-30.
  • Samuels, G.J., 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96(2): 195-206.
  • Samuels, G.J., Petrino, O., Kuhls, K., Lieckfeldt, E., Kubicek, CP., 1998. The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Studies in Mycology, 41: 1-54.
  • Santamarina, M.P., Rosellό, J., 2006. Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Protection, 25: 1130-1134.
  • Tang, P., Mohan, S., Sigler, L., Witterick, I., Summerbell, R., Campbell, I., Mazzulli, T., 2003. Allergic fungal sinusitis associated with Trichoderma longibrachiatum. Journal of Clinical Microbiology, 41(11): 5333-5336.
  • Turak, S., 1997. Erzincan ili fasulye ekim alanlarında kök çürüklüğü oluşturan fungal etmenlerin belirlenmesi ve bunların bazı fasülye çeşitlerinde patojeniteleri ile antagonist Trichoderma türleri ile etkileşimlerinin incelenmesi. www.erzincanbk. gov.tr/sb32.htm (Erişim tarihi: 01.05.2015).
  • Turhan, G., 1973. Fungi isolated from the roots of diseased vegetable seedlings. Journal of Turkish Phytopathology, 2: 100-112.
  • Vinale, F., Marra, R., Scala, F., Ghisalberti, E.L., Lorita, M., Sivasithamparam, K., 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43: 143-148.
  • Weindling, R., 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22: 837- 845.
  • Weindling, R., 1934. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24: 1153-1179.
  • Weindling, R., 1941. Experimental consideration of the mold toxin of Gliocladium and Trichoderma. Phytopathology, 31: 991-1003.
  • Widden, P., Abitbol, J.J., 1980. Seasonality of Trichoderma species in a spruce forest soil. Mycologia, 72: 775-784.
  • Windham, M.T., Elad, Y., Baker, R., 1986. A mechanism for increased plant-growth induced by Trichoderma spp. Phytopathology, 76(5): 518-521.
  • Yedidia, I., Benhamou, N., Chet, I., 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrolagent Trichoderma harzianum. Microbiolgy, 65: 1061-1070.
  • Yedidia, I., Srivastva, A.K., Kapulnik, Y., Chet, I., 2001. Effecet of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil, 235: 235-242.
There are 57 citations in total.

Details

Journal Section Research Article
Authors

Mehmet Hadi Aydın

Publication Date September 30, 2015
Published in Issue Year 2015 Volume: 2 Issue: 2

Cite

APA Aydın, M. H. (2015). Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar. Türkiye Tarımsal Araştırmalar Dergisi, 2(2), 135-148. https://doi.org/10.19159/tutad.10042
AMA Aydın MH. Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar. TÜTAD. October 2015;2(2):135-148. doi:10.19159/tutad.10042
Chicago Aydın, Mehmet Hadi. “Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar”. Türkiye Tarımsal Araştırmalar Dergisi 2, no. 2 (October 2015): 135-48. https://doi.org/10.19159/tutad.10042.
EndNote Aydın MH (October 1, 2015) Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar. Türkiye Tarımsal Araştırmalar Dergisi 2 2 135–148.
IEEE M. H. Aydın, “Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar”, TÜTAD, vol. 2, no. 2, pp. 135–148, 2015, doi: 10.19159/tutad.10042.
ISNAD Aydın, Mehmet Hadi. “Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar”. Türkiye Tarımsal Araştırmalar Dergisi 2/2 (October 2015), 135-148. https://doi.org/10.19159/tutad.10042.
JAMA Aydın MH. Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar. TÜTAD. 2015;2:135–148.
MLA Aydın, Mehmet Hadi. “Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 2, no. 2, 2015, pp. 135-48, doi:10.19159/tutad.10042.
Vancouver Aydın MH. Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar. TÜTAD. 2015;2(2):135-48.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667