BibTex RIS Cite

Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler

Year 2016, Volume: 3 Issue: 1, 89 - 95, 31.03.2016
https://doi.org/10.19159/tutad.67661

Abstract

Su taşkını meydana gelen topraklarda havanın yerini su almaktadır. Su taşkını, toprağın suya doygun olduğu
koşullarda bitki köklerinin toprakta yeterli oksijen olmaması nedeniyle normal bir solunum yapamadığı ciddi bir problemdir.
Kökler, su taşkınlarından kaynaklı oksijen eksikliğinde doğrudan ve ilk olarak etkilenen organlardır. Su taşkını süresince,
bitki kök gelişimi engellenebilmekte ve kök ölümlerine neden olabilmektedir. Su taşkınlarına bitkilerin tepkisi su taşkınının
meydana gelme zamanı, toprağın su altında kalma süresi ve bitkinin cinsi, türü ve tür içerisindeki farklılıklarına bağlı olarak
değişmektedir. Aerenkima oluşumu ve adventif kökler uzun süreli su taşkınlarında hipoksi ve anoksi koşullara bitkilerin
verdiği en yaygın tepkiler arasında yer almaktadır. Oksijenden yoksun kök sistemleri ile hem kök hem sürgün gelişimi için
yetersiz besin maddesi alımı gerçekleşir. Toprak üstü aksamda su taşkınına duyarlı ya da daha az toleranslı bitkiler
fotosentez kapasitesinde meydana gelen önemli azalmalar nedeniyle zarar görebilmektedir. Fotosentez kapasitesindeki
düşüşün en önemli nedeni ise stomatal açıklıktaki azalmadır. Su taşkınının diğer bir etkisi ise, büyüme ve yaprak
genişlemesini sağlayan bazı bitki hormonlarının engellenmesidir. Ayrıca etilen hormonu kök bölgesindeki oksijensizliğe
karşı bitkilerin hayatta kalabilmesi için artış göstermektedir. Bu makalede, su taşkınlarının bitkilerin köklerinde oluşturduğu
değişimler ve hormonsal tepkiler incelenmiştir.

References

  • Ahmed, F., Rafii, M.Y., Ismail, M.R., Juraimi, A.S., Rahim, H.A., Asfaliza, R., Latif, M.A., 2013. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013: 1-10, http://dx.doi.org/10.1155/2013/963525.
  • Akhtar, I., Nazir, N., 2013. Effect of waterlogging and drought stress in plants. International Journal of Water Resources and Environmental Sciences, 2(2): 34-40.
  • Ashraf, M.A., 2012. Waterlogging stress in plants. African Journal of Agricultural Research, 7(13): 1976-1981.
  • Broughton, S., Zhou, G., Teakle, N.L., Matsuda, R., Zhou, M., O’Leary, R.A., Colmer, T.D., Li, C., 2015. Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breeding, 35: 27, http://dx.doi.org/10.1007/s11032-015-0243-3.
  • Cannell, R.Q., Belford, R.K., Blackwell, P.S., Govi, G., Thomson, R.J., 1985. Effects of waterlogging on soil aeration and on root and shoot growth and yield of winter oats (Avena sativa L.). Plant and Soil, 85(3): 361-373.
  • Dias-Filho, M.B., Dos Santos Lopes, M.J., 2011. Screening for tolerance to waterlogging in forage plants. Proceedings of the III International Symposium on Forage Breeding, November 7th to 11th, Bonito, MS/Brazil, pp: 333-346.
  • Drew, M.C., Lynch, J.M., 1980. Soil anaerobiosis, microorganisms, and root function. Annual Review Phytopathology, 18: 37-66.
  • Ekanayake, I.J., 1998. Screening for abiotic stres resistance in root and tuber crops. IITA Research Guide 68. Training Program, International Institute Tropical Agriculture (IITA), Ibadani, Nigeria.
  • El-Beltagy, A.S., Hall, M.A., 1974. Effects of water stress upon endogenous ethylene levels. New Phytologist, 73: 47-60.
  • Ezin, V., De La Pena, R., Ahanchede, A., 2010. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, 22(2): 131-142.
  • Gibberd, M.R., Gray, J.D., Cocks, P.S., Colmer, T.D., 2001. Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and “aerotropic rooting”. Annals of Botany, 88(4): 579-589.
  • He, C.J., Finlayson, S.A., Drew, M.C., Jordan, W.R., Morgan, P.W., 1996. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiology, 112(4): 1679-1685.
  • Jackson, M.B., 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annual Review Plant Physiology, 36: 145-174.
  • Jackson, M.B., Campbell, D.J., 1979. Effects of benzyladenine and gibberellic acid on the responses of tomato plants to anaerobic root environments and to etylene. New Phytologist, 82(2): 331-340.
  • Juan De La Cruz Jiménez, S., Liz Patricia Moreno, F., Stanislav, M., 2012. Plant responses to stress due to flooding. Revista Colombiana de Ciencias Hortícolas, 6(1): 96-109.
  • Lemon, R., 2013. Effects of waterlogged soils and reduced heat unit accumulation in cotton. http://agrilifecdn.tamu.edu/coastalbend/files/2011/09/NEWS04_6web_13.pdf (Erişim tarihi: 13.11.2014).
  • Liao, C., Lin, C., 2001. Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, 25(3): 148-157.
  • Morita, S., Abe, J., Furubayashi, S., Lux, A., Tajima, R., 2004. Effects of waterlogging on root system of soybean. Proceedings of the 4th International Crop Science Congress, September 26-October 1, Brisbane, Australia.
  • Mustroph, A., Albrecht, G., 2003. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum, 117(4): 508-520.
  • Mustroph, A., Boamfa, E.I., Laarhoven, L.J.J., Harren, F.J.M., Albrecht, G., Grimm, B., 2006. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots. Planta, 225(1): 103-114.
  • Mustroph, A., Stock, J., Hess, N., Aldous, S., Dreilich, A., Grimm, B., 2013. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Functional Plant Biology, 4(125): 1-16, http://dx.doi.org/10.3389/fpls.2013.00125.
  • Najeeb, U., Bange, M.P., Tan, D.K.Y., Atwell, B.J., 2015. Special Issue: Plant Responses to Low-Oxygen Environments. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB Plants, 7: 1-17, http://dx.doi.org/10.1093/aobpla/plv080.
  • Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., Nakazono, M., 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice, 5(2): 1-14.
  • Paterson, J., 2007. Unravelling the roots of waterlogged wheat. Farming Ahead, January 2007, 180: 44-45, http://www.kondinin.com.au (Erişim tarihi: 10.10.2014).
  • Qui, J., Wang, R., Yan, J., Hu, J., 2005. Seed film coating with uniconazole ımproves rape seedling growth in relation to physiological changes under waterlogging stress. Plant Growth Regulation, 47(1): 75-81.
  • Rajhi, I., 2011. Study of aerenchyma formation in maize roots under waterlogged conditions. PhD Thesis, Tokyo University Agriculture and Environmental Biology Department, Tokyo, Japan.
  • Ren, B., Zhu, Y., Zhang, J., Dong, S., Liu, P., Zhao, B., 2016. Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crops Research, (In Press), http://dx.doi.org/10.1016/ j.fcr.2015.10.016.
  • Schravendijk, H.W., Van Andel, O.M., 1985. Interdependence of growth, water relations and abscisic acid level in Phaseolus vulgaris during waterlogging. Physiologia Plantarum, 63(2): 215-220.
  • Steffens, D., Hütsch, B.W., Eschholz, T., Lošák, T., Schuberts, S., 2005. Waterlogging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environment, 51(12): 545-552.
  • Tiryakioğlu, M., Karanlık, S., Aslanyürek, D., 2014. Farklı su baskını sürelerinin ekmeklik buğday fidelerinde yaprak alanı, kuru madde ve klorofil içeriğine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 1(2): 281-288.
  • Vartapetian, B.B., Jackson, M.B., 1997. Plant adaptations to anaerobic stress: A review. Annals of Botany, 79(suppl. A): 3-20.
  • Visser, E.J.W., Bögemann, G.M., Blom, C.W.P.M., Voesenek, L.A.C.J., 1996. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. Journal of Experimental Botany, 47(296): 403-410.
  • Yavaş, İ., Ünay, A., Aydın, M., 2012. The waterlogging tolerance of wheat varieties in western of Turkey. The Scientific World Journal, 2012: 1-7, http://dx.doi.org/10.1100/2012/529128.
  • Ye, C., Yan-Jun, L., Can-Jin, Z., Chong-Shun, Z., Xue-Kun, Z., Xing, L., Chun-Lei, Z., 2009. Effect of application of nitrogen, phosphorus and potassium fertilizers on yield in rapeseed (Brassica napus L.) under the waterlogging stress. Acta Metallurgica Sinica, 15(5): 1122-1129.
  • Yemelyanov, V.V., Shishova, M.F., 2012. The role of phytohormones in the control of plant adaptation to oxygen depletion. In: Nafees A. Khan, Rahat Nazar, Noushina Iqbal, Naser A. Anjum (Eds), Phytohormones and abiotic stress tolerance in plants, pp. 229-248, http://dx.doi.org/10.1007/978-3-642-25829-9_10.
  • Zhang, X., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., Hayes, D., Nichols, D.S., Zhou, M., 2015. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant and Soil, 394(1): 355-372.
  • Zhou, W., Zhao, D., Lin, X., 1997. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). Journal of Plant Growth Regulation, 16(1): 47-53.
  • Zhou, J., Qi, A., Zhang, Y., Wan, S., Qin, P., 2012. Adventitious root growth and relative physiological responses to waterlogging in the seedlings of seashore mallow (Kosteletzkya virginica), a biodiesel plant. Australian Journal of Crop Science, 6(1): 73-80.
  • Zubairi, Z., Saeed, Z., Nazir, A., Saddique, S., Chaudhary, F., Saeed, S., 2012. Water Logging a serious problem for the growth of maize (Zea mays L.). International Journal of Water Resources and Environmental Sciences, 1(4): 109-112.
Year 2016, Volume: 3 Issue: 1, 89 - 95, 31.03.2016
https://doi.org/10.19159/tutad.67661

Abstract

References

  • Ahmed, F., Rafii, M.Y., Ismail, M.R., Juraimi, A.S., Rahim, H.A., Asfaliza, R., Latif, M.A., 2013. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013: 1-10, http://dx.doi.org/10.1155/2013/963525.
  • Akhtar, I., Nazir, N., 2013. Effect of waterlogging and drought stress in plants. International Journal of Water Resources and Environmental Sciences, 2(2): 34-40.
  • Ashraf, M.A., 2012. Waterlogging stress in plants. African Journal of Agricultural Research, 7(13): 1976-1981.
  • Broughton, S., Zhou, G., Teakle, N.L., Matsuda, R., Zhou, M., O’Leary, R.A., Colmer, T.D., Li, C., 2015. Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breeding, 35: 27, http://dx.doi.org/10.1007/s11032-015-0243-3.
  • Cannell, R.Q., Belford, R.K., Blackwell, P.S., Govi, G., Thomson, R.J., 1985. Effects of waterlogging on soil aeration and on root and shoot growth and yield of winter oats (Avena sativa L.). Plant and Soil, 85(3): 361-373.
  • Dias-Filho, M.B., Dos Santos Lopes, M.J., 2011. Screening for tolerance to waterlogging in forage plants. Proceedings of the III International Symposium on Forage Breeding, November 7th to 11th, Bonito, MS/Brazil, pp: 333-346.
  • Drew, M.C., Lynch, J.M., 1980. Soil anaerobiosis, microorganisms, and root function. Annual Review Phytopathology, 18: 37-66.
  • Ekanayake, I.J., 1998. Screening for abiotic stres resistance in root and tuber crops. IITA Research Guide 68. Training Program, International Institute Tropical Agriculture (IITA), Ibadani, Nigeria.
  • El-Beltagy, A.S., Hall, M.A., 1974. Effects of water stress upon endogenous ethylene levels. New Phytologist, 73: 47-60.
  • Ezin, V., De La Pena, R., Ahanchede, A., 2010. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, 22(2): 131-142.
  • Gibberd, M.R., Gray, J.D., Cocks, P.S., Colmer, T.D., 2001. Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and “aerotropic rooting”. Annals of Botany, 88(4): 579-589.
  • He, C.J., Finlayson, S.A., Drew, M.C., Jordan, W.R., Morgan, P.W., 1996. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiology, 112(4): 1679-1685.
  • Jackson, M.B., 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annual Review Plant Physiology, 36: 145-174.
  • Jackson, M.B., Campbell, D.J., 1979. Effects of benzyladenine and gibberellic acid on the responses of tomato plants to anaerobic root environments and to etylene. New Phytologist, 82(2): 331-340.
  • Juan De La Cruz Jiménez, S., Liz Patricia Moreno, F., Stanislav, M., 2012. Plant responses to stress due to flooding. Revista Colombiana de Ciencias Hortícolas, 6(1): 96-109.
  • Lemon, R., 2013. Effects of waterlogged soils and reduced heat unit accumulation in cotton. http://agrilifecdn.tamu.edu/coastalbend/files/2011/09/NEWS04_6web_13.pdf (Erişim tarihi: 13.11.2014).
  • Liao, C., Lin, C., 2001. Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, 25(3): 148-157.
  • Morita, S., Abe, J., Furubayashi, S., Lux, A., Tajima, R., 2004. Effects of waterlogging on root system of soybean. Proceedings of the 4th International Crop Science Congress, September 26-October 1, Brisbane, Australia.
  • Mustroph, A., Albrecht, G., 2003. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum, 117(4): 508-520.
  • Mustroph, A., Boamfa, E.I., Laarhoven, L.J.J., Harren, F.J.M., Albrecht, G., Grimm, B., 2006. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots. Planta, 225(1): 103-114.
  • Mustroph, A., Stock, J., Hess, N., Aldous, S., Dreilich, A., Grimm, B., 2013. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Functional Plant Biology, 4(125): 1-16, http://dx.doi.org/10.3389/fpls.2013.00125.
  • Najeeb, U., Bange, M.P., Tan, D.K.Y., Atwell, B.J., 2015. Special Issue: Plant Responses to Low-Oxygen Environments. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB Plants, 7: 1-17, http://dx.doi.org/10.1093/aobpla/plv080.
  • Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., Nakazono, M., 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice, 5(2): 1-14.
  • Paterson, J., 2007. Unravelling the roots of waterlogged wheat. Farming Ahead, January 2007, 180: 44-45, http://www.kondinin.com.au (Erişim tarihi: 10.10.2014).
  • Qui, J., Wang, R., Yan, J., Hu, J., 2005. Seed film coating with uniconazole ımproves rape seedling growth in relation to physiological changes under waterlogging stress. Plant Growth Regulation, 47(1): 75-81.
  • Rajhi, I., 2011. Study of aerenchyma formation in maize roots under waterlogged conditions. PhD Thesis, Tokyo University Agriculture and Environmental Biology Department, Tokyo, Japan.
  • Ren, B., Zhu, Y., Zhang, J., Dong, S., Liu, P., Zhao, B., 2016. Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crops Research, (In Press), http://dx.doi.org/10.1016/ j.fcr.2015.10.016.
  • Schravendijk, H.W., Van Andel, O.M., 1985. Interdependence of growth, water relations and abscisic acid level in Phaseolus vulgaris during waterlogging. Physiologia Plantarum, 63(2): 215-220.
  • Steffens, D., Hütsch, B.W., Eschholz, T., Lošák, T., Schuberts, S., 2005. Waterlogging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environment, 51(12): 545-552.
  • Tiryakioğlu, M., Karanlık, S., Aslanyürek, D., 2014. Farklı su baskını sürelerinin ekmeklik buğday fidelerinde yaprak alanı, kuru madde ve klorofil içeriğine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 1(2): 281-288.
  • Vartapetian, B.B., Jackson, M.B., 1997. Plant adaptations to anaerobic stress: A review. Annals of Botany, 79(suppl. A): 3-20.
  • Visser, E.J.W., Bögemann, G.M., Blom, C.W.P.M., Voesenek, L.A.C.J., 1996. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. Journal of Experimental Botany, 47(296): 403-410.
  • Yavaş, İ., Ünay, A., Aydın, M., 2012. The waterlogging tolerance of wheat varieties in western of Turkey. The Scientific World Journal, 2012: 1-7, http://dx.doi.org/10.1100/2012/529128.
  • Ye, C., Yan-Jun, L., Can-Jin, Z., Chong-Shun, Z., Xue-Kun, Z., Xing, L., Chun-Lei, Z., 2009. Effect of application of nitrogen, phosphorus and potassium fertilizers on yield in rapeseed (Brassica napus L.) under the waterlogging stress. Acta Metallurgica Sinica, 15(5): 1122-1129.
  • Yemelyanov, V.V., Shishova, M.F., 2012. The role of phytohormones in the control of plant adaptation to oxygen depletion. In: Nafees A. Khan, Rahat Nazar, Noushina Iqbal, Naser A. Anjum (Eds), Phytohormones and abiotic stress tolerance in plants, pp. 229-248, http://dx.doi.org/10.1007/978-3-642-25829-9_10.
  • Zhang, X., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., Hayes, D., Nichols, D.S., Zhou, M., 2015. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant and Soil, 394(1): 355-372.
  • Zhou, W., Zhao, D., Lin, X., 1997. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). Journal of Plant Growth Regulation, 16(1): 47-53.
  • Zhou, J., Qi, A., Zhang, Y., Wan, S., Qin, P., 2012. Adventitious root growth and relative physiological responses to waterlogging in the seedlings of seashore mallow (Kosteletzkya virginica), a biodiesel plant. Australian Journal of Crop Science, 6(1): 73-80.
  • Zubairi, Z., Saeed, Z., Nazir, A., Saddique, S., Chaudhary, F., Saeed, S., 2012. Water Logging a serious problem for the growth of maize (Zea mays L.). International Journal of Water Resources and Environmental Sciences, 1(4): 109-112.
There are 39 citations in total.

Details

Journal Section Review
Authors

İlkay Yavaş

Aydın Ünay

Publication Date March 31, 2016
Published in Issue Year 2016 Volume: 3 Issue: 1

Cite

APA Yavaş, İ., & Ünay, A. (2016). Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler. Türkiye Tarımsal Araştırmalar Dergisi, 3(1), 89-95. https://doi.org/10.19159/tutad.67661
AMA Yavaş İ, Ünay A. Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler. TÜTAD. April 2016;3(1):89-95. doi:10.19159/tutad.67661
Chicago Yavaş, İlkay, and Aydın Ünay. “Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi Ve Hormonal Değişiklikler”. Türkiye Tarımsal Araştırmalar Dergisi 3, no. 1 (April 2016): 89-95. https://doi.org/10.19159/tutad.67661.
EndNote Yavaş İ, Ünay A (April 1, 2016) Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler. Türkiye Tarımsal Araştırmalar Dergisi 3 1 89–95.
IEEE İ. Yavaş and A. Ünay, “Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler”, TÜTAD, vol. 3, no. 1, pp. 89–95, 2016, doi: 10.19159/tutad.67661.
ISNAD Yavaş, İlkay - Ünay, Aydın. “Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi Ve Hormonal Değişiklikler”. Türkiye Tarımsal Araştırmalar Dergisi 3/1 (April 2016), 89-95. https://doi.org/10.19159/tutad.67661.
JAMA Yavaş İ, Ünay A. Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler. TÜTAD. 2016;3:89–95.
MLA Yavaş, İlkay and Aydın Ünay. “Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi Ve Hormonal Değişiklikler”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 3, no. 1, 2016, pp. 89-95, doi:10.19159/tutad.67661.
Vancouver Yavaş İ, Ünay A. Su Taşkınına Maruz Kalan Bitkilerde Kök Gelişimi ve Hormonal Değişiklikler. TÜTAD. 2016;3(1):89-95.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667