Research Article
BibTex RIS Cite

Induction of Anthocyanin Accumulation in Callus Culture of 'Karaerik' (Vitis vinifera L.) by Ultraviolet Irradiation Effect

Year 2020, Volume: 7 Issue: 1, 96 - 104, 29.02.2020
https://doi.org/10.19159/tutad.673602

Abstract

In this study, the effect of ultraviolet (UV) irradiation on the induction of anthocyanin production in callus
cultures of 'Karaerik' grape cultivar was investigated. The most appropriate callus tissues were obtained from the leaves of
the cuttings grown in in vitro plants. Gamborg B-5 medium containing 3 combinations of NAA (naphthalene acetic acid),
and Kin (kinetin) was used. Callus tissues were subcultured two times with 21 days intervals. After the second subculture,
12 and 15 day old callus tissues were exposed to 254 nm UV-C light at 10 cm distance from the source for 10 and 15 min by
opening covers of the petri dishes in the sterile cabin. After the treatment, callus tissues were incubated under dark
conditions. Anthocyanin values were measured at 0, 24th, 48th and 72nd hours by spectrophotometer. It has been determined
that UV radiation is effective for the induction of anthocyanin production in grape tissues. The highest anthocyanin
production (196.74 μmol g-1 FW) was obtained from 12 day old calli grown in the first medium for a 72-hour incubation
period after 10 min UV irradiation.

Supporting Institution

Van Yüzüncü Yıl University Scientific Research Project Coordination

Project Number

FYL-2017-5934

Thanks

We are grateful for the financial support provided for this research by Van Yüzüncü Yıl University Scientific Research Project Coordination (FYL-2017-5934).

References

  • Abbasi, B.H., Stiles, A.R., Saxena, P.K., Liu, C.Z., 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Applied Biochemistry and Biotechnology, 168: 2057-2066.
  • Barz, W., Daniel, S., Hindeer, W., Jaques, U., Kessman H, Koster J, Otto C, Tiemann K., 1988. Plant Cell Biotechnology. M.S.S. Pais, F. Mavituna, J.M. Novais (Eds.), Elicitation and metabolism of phytoalexins in plant cell cultures, NATO ASI Series (Series H: Cell Biology), Vol 18, Springer, Berlin, Heidelberg.
  • Bhagyalakshmi, N., Thimmaraju, R., Narayan, M.S., 2004. Various hexoses and di-hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (Beta vulgaris). Plant Cell, Tissue and Organ Culture, 78(2): 183-195.
  • Blando, F., Scardino, A.P., De Bellis, L., Nicoletti, I., Giovinazzo, G., 2005. Characterization of in vitro anthocyanin producing sour cherry (Prunus cerasus L.) callus cultures. Food Research International, 38: 937-942.
  • Canturk, S., Kunter, B., Çoksarı, G., 2018. Effects of kaolin and dicarboxylic acid based stress inhibitors on aroma composition of two table grape cultivars (Vitis vinifera L.). Acta Scientiarum Polonorum Hortorum Cultus, 17(5): 37-46.
  • Cardoso, J.C., De Oliveira, M.E.B, De CI Cardoso, F., 2019. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37(2): 124-132.
  • Çetin, E.S., Babalık, Z., Göktürk Baydar, N., 2012. Bazı sofralık üzüm çeşitlerinde tanelerdeki toplam karbonhidrat, fenolik madde, antosiyanin, β-karoten ve C vitamini içeriklerinin belirlenmesi. IV. Ulusal Üzümsü Meyveler Sempozyumu, 3-5 Ekim, Antalya, s. 151-156.
  • Çetin, E.S., Uzunlar, F., Göktürk Baydar, N., 2011. UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6): 319-326.
  • Demirci., T., Özdamar, P., Göktürk Baydar, N., 2015. Tıbbi ve aromatik bitkiler ile sebzelerde kök kaynaklı sekonder metabolitlerin üretiminin artırılmasına yönelik in vitro uygulamalar. Turkish Journal of Agriculture-Food Science and Technology, 3(5): 261-270.
  • Eibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., Eibl, D., 2018. Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology, 102(20): 8661-8675.
  • Gamborg, O., Miller, R, Ojima, K., 1968. Nutrient requirement suspensions cultures of soybean root cells. Experimental Cell Research, 50(1): 151-158.
  • Grassmann, J., Hippeli, S., Elstner, E.F., 2002. Plant's de-fence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiology and Biochemistry, 40: 471-478.
  • Gundlach, H., Muller, J.M., Kuthan, T.M., Zenk, M.H., 1992. Jasmonic acid is a signal transducer in elicitor induced plant cell cultures. Plant Biology, 89(6): 2389-2393. Harborne, J.B., 2001. Twenty-five years of chemical ecology. Natural Product Reports, 18: 361-379.
  • Iercan, C., Nedelea, G., 2012. Experimental results concerning the effect of culture medium pH on the synthesized anthocyanin amount in the callus culture of Vitis vinifera L. Journal of Horticulture, Forestry and Biotechnology, 16(2): 71-73.
  • Karataş, İ., Elmastaş, M., Karataş, R., 2014. Siyah havuç (Daucus carota ssp. sativus var. atrorubens Alef) kallus kültüründe antosiyanin üretimine bazı uygulamaların etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 9: 62-73.
  • Keskin, N., Kunter, B., 2007. Erciş üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Tarım Bilimleri Dergisi, 13(4): 379-384.
  • Keskin, N., Kunter, B., 2008. Production of transresveratrol in 'Cabernet Sauvignon' (Vitis vinifera L.) callus culture in response to ultraviolet-C irradiation. Vitis, 47(4): 193-196.
  • Keskin, N., Kunter, B., 2009. The effects of callus age, UV irradiation and incubation time on trans-resveratrol production in grapevine callus culture. Journal of Agricultural Sciences, 15(1): 9-13.
  • Keskin, N., Kunter, B., 2010. Production of trans-resveratrol in callus tissue of Öküzgözü (Vitis vinifera L.) in response to ultraviolet-C irradiation. The Journal of Animal and Plant Sciences, 20(3): 197-200.
  • Khatami, F., Ghanati, F., 2011. Effects of UV irradiation on cell viability, anthocyanin, and flavonoid contents of callus-cultured Malva neglecta cells. International Conference on Life Science and Technology, 3: 198-201.
  • Lazăr, A., Petolescu, C., Peev, C., 2013. Interrelations between anthocyanins quantity synthetized in callus culture and the period of cultivation at Vitis vinifera L. Romanian Biotechnological Letters, 18(4): 8467-8474.
  • Luczkiewicz, M., Cisowski, W., 2001. Optimisation of the second phase of a two phase growth system for anthocyanin accumulation in callus cultures of Rudbeckia hirta. Plant Cell Tissue Organ Culture, 65: 57-68.
  • Matkowski, A., 2008. Plant in vitro culture for the production of antioxidants-A review. Biotechnology Advences, 26(6): 548-560.
  • Meng, X.C., Peng, J.Z., Wang, X.J., 2007. Anthocyanin accumulation and CHS, DFR gene expression regulated by light and sugar in Gerbera hybrida Ray Floret. Acta Horticulturae, 34: 227-230.
  • Mihai, R., Brezeanu, A., Cogalniceanu, G., 2009. Aspects of some elicitors influence on nonmorphogenic callus of Vitis vinifera var. Isabelle. Romanian Biotechnological Letters, 14(4): 4511-4518.
  • Mihai, R., Mitoi, M., Brezeanu, A., Cogalniceanu, G., 2010. Two-stage system, a possible strategy for the enhancement of anthocyanin biosynthesis in a long-term grape callus cultures. Romanian Biotechnological Letters, 15(1): 5026-5033.
  • Miura, H., Kitamura, Y., Ikenaga, T., Mizobe, K., Shimizu, T., Nakamura, M., 1998. Anthocyanin production of Glehnia littoralis callus cultures. Phytochemistry, 48(2): 279-283.
  • Mulabagal, V.M., Tsay, H.S., 2004. Plant cell cultures an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2: 29-48.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
  • Sökmen, A., Gürel, E., 2001. Sekonder metabolit üretimi. M. Babaoğlu, E. Gürel, S. Özcan (Ed.), Bitki Biyoteknolojisi, Doku Kültürü ve Uygulamaları, Selçuk Üniversitesi Vakfı Yayınları, Konya, s. 211-261.
  • Stintzing, F.C., Carle, R., 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science and Technology, 15(1): 19-38.
  • Tamura, H., Kumaoka, Y., Sugisawa, H. 1989. Identification and quantitative variation of anthocyanins produced by cultured callus tissue of Vitis sp. Agricultural and Biological Chemistry, 53(7): 1969-1970.
  • Tarrahi, R., Rezanejad, F., 2013. Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turkish Journal of Botany, 37: 1145-1154.
  • Verpoorte, R., Contin, A., Memelink, J., 2002. Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1: 13-25.

Induction of Anthocyanin Accumulation in Callus Culture of 'Karaerik' (Vitis vinifera L.) by Ultraviolet Irradiation Effect

Year 2020, Volume: 7 Issue: 1, 96 - 104, 29.02.2020
https://doi.org/10.19159/tutad.673602

Abstract

In this study, the effect of ultraviolet (UV) irradiation on the induction of anthocyanin production in callus
cultures of 'Karaerik' grape cultivar was investigated. The most appropriate callus tissues were obtained from the leaves of
the cuttings grown in in vitro plants. Gamborg B-5 medium containing 3 combinations of NAA (naphthalene acetic acid),
and Kin (kinetin) was used. Callus tissues were subcultured two times with 21 days intervals. After the second subculture,
12 and 15 day old callus tissues were exposed to 254 nm UV-C light at 10 cm distance from the source for 10 and 15 min by
opening covers of the petri dishes in the sterile cabin. After the treatment, callus tissues were incubated under dark
conditions. Anthocyanin values were measured at 0, 24th, 48th and 72nd hours by spectrophotometer. It has been determined
that UV radiation is effective for the induction of anthocyanin production in grape tissues. The highest anthocyanin
production (196.74 μmol g-1 FW) was obtained from 12 day old calli grown in the first medium for a 72-hour incubation
period after 10 min UV irradiation.

Project Number

FYL-2017-5934

References

  • Abbasi, B.H., Stiles, A.R., Saxena, P.K., Liu, C.Z., 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Applied Biochemistry and Biotechnology, 168: 2057-2066.
  • Barz, W., Daniel, S., Hindeer, W., Jaques, U., Kessman H, Koster J, Otto C, Tiemann K., 1988. Plant Cell Biotechnology. M.S.S. Pais, F. Mavituna, J.M. Novais (Eds.), Elicitation and metabolism of phytoalexins in plant cell cultures, NATO ASI Series (Series H: Cell Biology), Vol 18, Springer, Berlin, Heidelberg.
  • Bhagyalakshmi, N., Thimmaraju, R., Narayan, M.S., 2004. Various hexoses and di-hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (Beta vulgaris). Plant Cell, Tissue and Organ Culture, 78(2): 183-195.
  • Blando, F., Scardino, A.P., De Bellis, L., Nicoletti, I., Giovinazzo, G., 2005. Characterization of in vitro anthocyanin producing sour cherry (Prunus cerasus L.) callus cultures. Food Research International, 38: 937-942.
  • Canturk, S., Kunter, B., Çoksarı, G., 2018. Effects of kaolin and dicarboxylic acid based stress inhibitors on aroma composition of two table grape cultivars (Vitis vinifera L.). Acta Scientiarum Polonorum Hortorum Cultus, 17(5): 37-46.
  • Cardoso, J.C., De Oliveira, M.E.B, De CI Cardoso, F., 2019. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37(2): 124-132.
  • Çetin, E.S., Babalık, Z., Göktürk Baydar, N., 2012. Bazı sofralık üzüm çeşitlerinde tanelerdeki toplam karbonhidrat, fenolik madde, antosiyanin, β-karoten ve C vitamini içeriklerinin belirlenmesi. IV. Ulusal Üzümsü Meyveler Sempozyumu, 3-5 Ekim, Antalya, s. 151-156.
  • Çetin, E.S., Uzunlar, F., Göktürk Baydar, N., 2011. UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6): 319-326.
  • Demirci., T., Özdamar, P., Göktürk Baydar, N., 2015. Tıbbi ve aromatik bitkiler ile sebzelerde kök kaynaklı sekonder metabolitlerin üretiminin artırılmasına yönelik in vitro uygulamalar. Turkish Journal of Agriculture-Food Science and Technology, 3(5): 261-270.
  • Eibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., Eibl, D., 2018. Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology, 102(20): 8661-8675.
  • Gamborg, O., Miller, R, Ojima, K., 1968. Nutrient requirement suspensions cultures of soybean root cells. Experimental Cell Research, 50(1): 151-158.
  • Grassmann, J., Hippeli, S., Elstner, E.F., 2002. Plant's de-fence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiology and Biochemistry, 40: 471-478.
  • Gundlach, H., Muller, J.M., Kuthan, T.M., Zenk, M.H., 1992. Jasmonic acid is a signal transducer in elicitor induced plant cell cultures. Plant Biology, 89(6): 2389-2393. Harborne, J.B., 2001. Twenty-five years of chemical ecology. Natural Product Reports, 18: 361-379.
  • Iercan, C., Nedelea, G., 2012. Experimental results concerning the effect of culture medium pH on the synthesized anthocyanin amount in the callus culture of Vitis vinifera L. Journal of Horticulture, Forestry and Biotechnology, 16(2): 71-73.
  • Karataş, İ., Elmastaş, M., Karataş, R., 2014. Siyah havuç (Daucus carota ssp. sativus var. atrorubens Alef) kallus kültüründe antosiyanin üretimine bazı uygulamaların etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 9: 62-73.
  • Keskin, N., Kunter, B., 2007. Erciş üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Tarım Bilimleri Dergisi, 13(4): 379-384.
  • Keskin, N., Kunter, B., 2008. Production of transresveratrol in 'Cabernet Sauvignon' (Vitis vinifera L.) callus culture in response to ultraviolet-C irradiation. Vitis, 47(4): 193-196.
  • Keskin, N., Kunter, B., 2009. The effects of callus age, UV irradiation and incubation time on trans-resveratrol production in grapevine callus culture. Journal of Agricultural Sciences, 15(1): 9-13.
  • Keskin, N., Kunter, B., 2010. Production of trans-resveratrol in callus tissue of Öküzgözü (Vitis vinifera L.) in response to ultraviolet-C irradiation. The Journal of Animal and Plant Sciences, 20(3): 197-200.
  • Khatami, F., Ghanati, F., 2011. Effects of UV irradiation on cell viability, anthocyanin, and flavonoid contents of callus-cultured Malva neglecta cells. International Conference on Life Science and Technology, 3: 198-201.
  • Lazăr, A., Petolescu, C., Peev, C., 2013. Interrelations between anthocyanins quantity synthetized in callus culture and the period of cultivation at Vitis vinifera L. Romanian Biotechnological Letters, 18(4): 8467-8474.
  • Luczkiewicz, M., Cisowski, W., 2001. Optimisation of the second phase of a two phase growth system for anthocyanin accumulation in callus cultures of Rudbeckia hirta. Plant Cell Tissue Organ Culture, 65: 57-68.
  • Matkowski, A., 2008. Plant in vitro culture for the production of antioxidants-A review. Biotechnology Advences, 26(6): 548-560.
  • Meng, X.C., Peng, J.Z., Wang, X.J., 2007. Anthocyanin accumulation and CHS, DFR gene expression regulated by light and sugar in Gerbera hybrida Ray Floret. Acta Horticulturae, 34: 227-230.
  • Mihai, R., Brezeanu, A., Cogalniceanu, G., 2009. Aspects of some elicitors influence on nonmorphogenic callus of Vitis vinifera var. Isabelle. Romanian Biotechnological Letters, 14(4): 4511-4518.
  • Mihai, R., Mitoi, M., Brezeanu, A., Cogalniceanu, G., 2010. Two-stage system, a possible strategy for the enhancement of anthocyanin biosynthesis in a long-term grape callus cultures. Romanian Biotechnological Letters, 15(1): 5026-5033.
  • Miura, H., Kitamura, Y., Ikenaga, T., Mizobe, K., Shimizu, T., Nakamura, M., 1998. Anthocyanin production of Glehnia littoralis callus cultures. Phytochemistry, 48(2): 279-283.
  • Mulabagal, V.M., Tsay, H.S., 2004. Plant cell cultures an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2: 29-48.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
  • Sökmen, A., Gürel, E., 2001. Sekonder metabolit üretimi. M. Babaoğlu, E. Gürel, S. Özcan (Ed.), Bitki Biyoteknolojisi, Doku Kültürü ve Uygulamaları, Selçuk Üniversitesi Vakfı Yayınları, Konya, s. 211-261.
  • Stintzing, F.C., Carle, R., 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science and Technology, 15(1): 19-38.
  • Tamura, H., Kumaoka, Y., Sugisawa, H. 1989. Identification and quantitative variation of anthocyanins produced by cultured callus tissue of Vitis sp. Agricultural and Biological Chemistry, 53(7): 1969-1970.
  • Tarrahi, R., Rezanejad, F., 2013. Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turkish Journal of Botany, 37: 1145-1154.
  • Verpoorte, R., Contin, A., Memelink, J., 2002. Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1: 13-25.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dilhem Oğuz 0000-0002-2522-0857

Nurhan Keskin 0000-0003-2332-1459

Fethi Ahmet Özdemir 0000-0003-0862-9690

Project Number FYL-2017-5934
Publication Date February 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Oğuz, D., Keskin, N., & Özdemir, F. A. (2020). Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect. Türkiye Tarımsal Araştırmalar Dergisi, 7(1), 96-104. https://doi.org/10.19159/tutad.673602
AMA Oğuz D, Keskin N, Özdemir FA. Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect. TÜTAD. February 2020;7(1):96-104. doi:10.19159/tutad.673602
Chicago Oğuz, Dilhem, Nurhan Keskin, and Fethi Ahmet Özdemir. “Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis Vinifera L.) by Ultraviolet Irradiation Effect”. Türkiye Tarımsal Araştırmalar Dergisi 7, no. 1 (February 2020): 96-104. https://doi.org/10.19159/tutad.673602.
EndNote Oğuz D, Keskin N, Özdemir FA (February 1, 2020) Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect. Türkiye Tarımsal Araştırmalar Dergisi 7 1 96–104.
IEEE D. Oğuz, N. Keskin, and F. A. Özdemir, “Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect”, TÜTAD, vol. 7, no. 1, pp. 96–104, 2020, doi: 10.19159/tutad.673602.
ISNAD Oğuz, Dilhem et al. “Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis Vinifera L.) by Ultraviolet Irradiation Effect”. Türkiye Tarımsal Araştırmalar Dergisi 7/1 (February 2020), 96-104. https://doi.org/10.19159/tutad.673602.
JAMA Oğuz D, Keskin N, Özdemir FA. Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect. TÜTAD. 2020;7:96–104.
MLA Oğuz, Dilhem et al. “Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis Vinifera L.) by Ultraviolet Irradiation Effect”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 7, no. 1, 2020, pp. 96-104, doi:10.19159/tutad.673602.
Vancouver Oğuz D, Keskin N, Özdemir FA. Induction of Anthocyanin Accumulation in Callus Culture of ’Karaerik’ (Vitis vinifera L.) by Ultraviolet Irradiation Effect. TÜTAD. 2020;7(1):96-104.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667