Research Article
BibTex RIS Cite

The Effect of Land Use and Land Cover on Soil Organic Carbon Stock in Relation to Some Soil Properties

Year 2021, Volume: 8 Issue: 2, 154 - 167, 30.06.2021
https://doi.org/10.19159/tutad.865188

Abstract

Identifying the primary factors influencing spatial distribution of soil organic carbon (SOC) stock is critical for improving the accuracy of soil organic carbon stock estimation. The primary objective of the current study is to determine the effects of land use-land cover, and some soil characteristics on SOC stock in an area of 111 km2 in Vezirköprü district, Samsun province in the Central Black Sea Region of Turkey. To determine land use and land cover of the study area, Triplesat satellite image was used. Four main land use and land cover that are forest, pasture, settlement, and cultivated land were determined. According to the results obtained, it was determined that some soil characteristics and land use-land cover in the study area had a statistically significant effect on the spatial variation of SOC density. The amount of SOC stock in the study area varies between 4.79- and 94.10-tons ha-1 in surface (0-20 cm) soils and between 5.16- and 8.86-tons ha-1 in subsurface (20-40 cm) soils. Among the different land uses, it was determined that the highest amount of SOC stock in the surface soil was 53.356 tons ha-1 in forest areas, while the lowest amount of SOC stock was in agricultural lands with 34.048 tons ha-1.

References

  • Anonim, 2001. Ormanlar ve Ormancılığımız. Devlet Planlama Teşkilatı Yayınları, Yayın No: 2630, Ankara.
  • Anonim, 2020. Meteoroloji Genel Müdürlüğü Vezirköprü Bülteni. (https://www.mgm.gov.tr/), (Erişim tarihi: 15.03.2020).
  • Anonymous, 1992a. Protect and Produce: Putting the Pieces Together. United Nation Food and Agriculture Organization, Rome.
  • Anonymous, 1992b. Soil Survey Staff. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Survey Investigation Report No.1, USDA Goverment Printing Office, Washington DC., USA.
  • Anonymous, 2000. Landuse, landuse change and forestry. In: R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo and D.J. Dokken, (Eds.). A Special Report of the Intergovernmental Panel on Climate Change, WHO/UNEP. Cambridge University Press, UK, pp. 25-51.
  • Anonymous, 2001. International panel on climate change (IPCC). Summary for policy makers. In: J.T. Houghton, Y. Ding, D.J. Griggs, M. Nouguer, P.J. Van Der Liden, D. Xiaosu, (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p. 944.
  • Arnaud, R.J.St., Mermut, A.R., Boon Goh, T., 1993. Identification and measurement of carbonate minerals. In: R. Martin (Ed.), Soil Sampling and Methods of Analysis, Boca Raton, FL, Lewis Publishers, A Special Publication of the Canadian Society of Soil Science, p. 814.
  • Başaran, M., 2004. Türkiye’nin organik karbon stoğu. Harran Üniversitesi Ziraat Fakültesi Dergisi, 8(3): 31-36.
  • Bhatti, J.S., Apps M.J., Tarnocai, C., 2002. Estimates of soil organic carbon stocks in central Canada using three different approaches. Canadian Journal of Forest Research, 32(5): 805-812.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: A. Klute (Ed.), Methods of Soil Analysis, Part 1-Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, pp. 363-382.
  • Bouyoucous, G.J., 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43: 435-438.
  • Bowman, R.A., Vigil, M.F., Nielsen, D.C., Anderson. R.L., 1999. Soil organic matter changes in intensively cropped dryland systems. Soil Science Society of America, 63(1): 186-191.
  • Budak, M., Günal, H., 2018. Yukarı Dicle Havzasında farklı arazi kullanımları altındaki toprakların karbon depolama potansiyelleri. Anadolu Orman Araştırmaları Dergisi, 4(1): 61-74.
  • Buyanovsky, G.A., Kucera, C.L., Wagner, G.H., 1987. Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 68(6): 2023-2031.
  • Celik, I., Ortas, I., Kilic, S., 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Resources, 78(1): 59-67.
  • Dengiz, O., Saygın, F., İmamoğlu, A., 2019. Spatial variability of soil organic carbon density under different land cover and soil types in a sub-humid terrestrial ecosystem. Eurasian Journal of Soil Science, 8(1): 35-43.
  • Eswaran, H., Van Den Berg, E., Reich, P., 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57(1): 192-194.
  • Goovaerts, P., 1999. Using elevation to aid the geostatistical mapping of rain fall erosivity. Catena, 34(4): 227-242.
  • Hooker, T.D., Compton, J.E., 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Application, 13(2): 299-313.
  • Janzen, H.H., 2004. Carbon cycling in earth systems-a soil science perspective. Agriculture, Ecosystems and Environment, 104(3): 399-417.
  • Janzen, H.H., 2006. The soil carbon dilemma: shall we hoard it or use it? Soil Biology and Biochemistry, 38(3): 419-424.
  • Johnston, K., Hoef, M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS geostatistical Analyst, New York, ESRI.
  • Kaya, S.N., Demirağ Turan, İ., Dengiz, O., Saygın, F., 2020. Farklı konumsal çözünürlüğe sahip uydu görüntüleri kullanarak CORINE arazi örtüsü/arazi kullanım sınıflarının belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 7(2): 207-218.
  • Lal, R., 2002. The potential of soils of the tropics to sequester carbon and mitigate the grenhouse effect. Advances in Agronomy, 76: 1-30.
  • Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220(1): 242-258.
  • Mallants, D., Mohanty, B.P., Jacques, D., Feyen, J., 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 161(3): 167-181.
  • Mann, L.K., 1986. Changes in soil carbon storage after cultivation. Soil Science, 142: 279-288.
  • Mulla, D.J., McBratney, A.B., 2000. Soil spatial variability. In: E.S. Malcolm (Ed.), Handbook of Soil Science, CRS Press, A-321-A-351.
  • Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. Madison, Wisconsin, USA, pp. 539-579.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2016. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının temel verimlilik düzeyleri ve alansal dağılımları. Anadolu Tarım Bilimleri Dergisi, 31(1): 136-148.
  • Paustian, K., Babcock, B., Kling, C., Hatfield, J.L., Lal, R., Mccarl, B., Mclaughlin, S., Post, W.M., Mosier, A.R., Rice, C., Robertson, G.P., Rosenberg, N.J., Rosenzweig, C., Schlesinger, W.H., Zilberman, D., 2004. Climate Change and Greenhouse Gas Mitigation: Challenges and Opportunities for Agriculture. Council for Agricultural Science and Technology, Task Force Report No. 141.
  • Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N., 1998. CO2 mitigation by agriculture: An overview. Climatic Change, 40: 135-162.
  • Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G., 1982. Soil carbon pools and world life zones. Nature, 298: 156-159.
  • Post, W.M., Kwon, K.C., 2000. Soil organic carbon sequestration and land use change: Processes and potential. Global Change Biology, 6(3): 317-327.
  • Saha Debasish Kukal, S.S., Sharma, S., 2011. Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant and Soil, 339: 457-470.
  • Sandra, H., Thomas, A., Jens, L., Peter, W., 2008. The effects of tillage system on soil organic carbon under moist, cold-temperature conditions. Soil Tillage Resources, 98(1): 94-105.
  • Sotomayor, D., Rice, C.W., 1999. Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation. Journal of Environmental Quality, 28: 784-793.
  • Swift, R.S., 2001. Sequestration of carbon by soil. Soil Science, 166(11): 858-871.
  • Tejada, M., Gonzalez, J.L., 2007. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil and Tillage Research, 93(1): 197-205.
  • Tolunay, D., Çömez, A., 2008. Türkiye ormanlarında toprak ve ölü örtüde depolanmış organik karbon miktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu, 22-25 Ekim, Hatay, s. 750-765.
  • Van Wambeke, A.R., 2000. The Newhall Simulation Model for Estimating Soil Moisture & Temperature Regimes. Department of Crop and Soil Sciences, U.S. Departmanet of Agriculture, Ithaca, N.Y., Washington, DC, pp. 9.
  • Weindorf, D.C., Zhu, Y., 2010. Spatial variability of soil properties at capulin volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2): 185-197.
  • West, T.O., Post, W.M., 2002. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America, 66(6): 1930-1946.
  • White, A., Cannell, M.G.R., Friend, A.D., 1999. Climate change impacts on ecosystems and the terrestrial carbon sink: A new assessment. Global Environmental Change, 9(1): 21-30.
  • Wilding, L.P., 1985. Spatial variability: It's documentation, accommodation and implication to soil surveys. In: D.R. Nielsen and J. Bouma (Eds.), Soil Spatial Variability, Pudoc, Wageningen, The Netherlands, pp. 166-194.

Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi

Year 2021, Volume: 8 Issue: 2, 154 - 167, 30.06.2021
https://doi.org/10.19159/tutad.865188

Abstract

Toprak organik karbon (TOK) stokunun mekânsal dağılımını etkileyen temel faktörlerin belirlenmesi, TOK stok tahminlerinin doğruluğunu artırmak için kritik öneme sahiptir. Bu çalışmanın temel amacı, Türkiye’nin Orta Karadeniz Bölgesi’nde yer alan Samsun ilinin Vezirköprü ilçesinin 111 km2’lik kısmını kaplayan alanda arazi kullanımı-arazi örtüsü ile bazı toprak özelliklerinin TOK stoku üzerindeki etkilerini belirlemektir. Çalışma alanının arazi kullanımını ve arazi örtüsünü belirlemek için Triplesat uydu görüntüsü kullanılmıştır. Orman, mera, yerleşim ve tarım arazileri olmak üzere dört ana arazi kullanımı ve arazi örtüsü belirlenmiştir. Elde edilen sonuçlara göre, çalışma alanında bazı toprak özelliklerinin ve arazi kullanımının-arazi örtüsünün TOK yoğunluğunun mekânsal değişimini istatistiksel olarak önemli düzeyde etkilediği saptanmıştır. Çalışma alanında TOK stok miktarı yüzey (0-20 cm) topraklarında 4.79 ton ha-1 ile 94.10 ton ha-1 arasında, yüzey altı (20-40 cm) topraklarda ise 5.16 ton ha-1 ile 8.86 ton ha-1 arasında değişmektedir. Farklı arazi kullanımları arasında en yüksek TOK stoku miktarının yüzey toprağında 53.356 ton ha-1 ile ormanlık alanlarda iken, en düşük TOK stoku miktarının ise 34.048 ton ha-1 ile tarım arazilerinde olduğu belirlenmiştir.

References

  • Anonim, 2001. Ormanlar ve Ormancılığımız. Devlet Planlama Teşkilatı Yayınları, Yayın No: 2630, Ankara.
  • Anonim, 2020. Meteoroloji Genel Müdürlüğü Vezirköprü Bülteni. (https://www.mgm.gov.tr/), (Erişim tarihi: 15.03.2020).
  • Anonymous, 1992a. Protect and Produce: Putting the Pieces Together. United Nation Food and Agriculture Organization, Rome.
  • Anonymous, 1992b. Soil Survey Staff. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Survey Investigation Report No.1, USDA Goverment Printing Office, Washington DC., USA.
  • Anonymous, 2000. Landuse, landuse change and forestry. In: R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo and D.J. Dokken, (Eds.). A Special Report of the Intergovernmental Panel on Climate Change, WHO/UNEP. Cambridge University Press, UK, pp. 25-51.
  • Anonymous, 2001. International panel on climate change (IPCC). Summary for policy makers. In: J.T. Houghton, Y. Ding, D.J. Griggs, M. Nouguer, P.J. Van Der Liden, D. Xiaosu, (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p. 944.
  • Arnaud, R.J.St., Mermut, A.R., Boon Goh, T., 1993. Identification and measurement of carbonate minerals. In: R. Martin (Ed.), Soil Sampling and Methods of Analysis, Boca Raton, FL, Lewis Publishers, A Special Publication of the Canadian Society of Soil Science, p. 814.
  • Başaran, M., 2004. Türkiye’nin organik karbon stoğu. Harran Üniversitesi Ziraat Fakültesi Dergisi, 8(3): 31-36.
  • Bhatti, J.S., Apps M.J., Tarnocai, C., 2002. Estimates of soil organic carbon stocks in central Canada using three different approaches. Canadian Journal of Forest Research, 32(5): 805-812.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: A. Klute (Ed.), Methods of Soil Analysis, Part 1-Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, pp. 363-382.
  • Bouyoucous, G.J., 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43: 435-438.
  • Bowman, R.A., Vigil, M.F., Nielsen, D.C., Anderson. R.L., 1999. Soil organic matter changes in intensively cropped dryland systems. Soil Science Society of America, 63(1): 186-191.
  • Budak, M., Günal, H., 2018. Yukarı Dicle Havzasında farklı arazi kullanımları altındaki toprakların karbon depolama potansiyelleri. Anadolu Orman Araştırmaları Dergisi, 4(1): 61-74.
  • Buyanovsky, G.A., Kucera, C.L., Wagner, G.H., 1987. Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 68(6): 2023-2031.
  • Celik, I., Ortas, I., Kilic, S., 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Resources, 78(1): 59-67.
  • Dengiz, O., Saygın, F., İmamoğlu, A., 2019. Spatial variability of soil organic carbon density under different land cover and soil types in a sub-humid terrestrial ecosystem. Eurasian Journal of Soil Science, 8(1): 35-43.
  • Eswaran, H., Van Den Berg, E., Reich, P., 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57(1): 192-194.
  • Goovaerts, P., 1999. Using elevation to aid the geostatistical mapping of rain fall erosivity. Catena, 34(4): 227-242.
  • Hooker, T.D., Compton, J.E., 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Application, 13(2): 299-313.
  • Janzen, H.H., 2004. Carbon cycling in earth systems-a soil science perspective. Agriculture, Ecosystems and Environment, 104(3): 399-417.
  • Janzen, H.H., 2006. The soil carbon dilemma: shall we hoard it or use it? Soil Biology and Biochemistry, 38(3): 419-424.
  • Johnston, K., Hoef, M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS geostatistical Analyst, New York, ESRI.
  • Kaya, S.N., Demirağ Turan, İ., Dengiz, O., Saygın, F., 2020. Farklı konumsal çözünürlüğe sahip uydu görüntüleri kullanarak CORINE arazi örtüsü/arazi kullanım sınıflarının belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 7(2): 207-218.
  • Lal, R., 2002. The potential of soils of the tropics to sequester carbon and mitigate the grenhouse effect. Advances in Agronomy, 76: 1-30.
  • Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220(1): 242-258.
  • Mallants, D., Mohanty, B.P., Jacques, D., Feyen, J., 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 161(3): 167-181.
  • Mann, L.K., 1986. Changes in soil carbon storage after cultivation. Soil Science, 142: 279-288.
  • Mulla, D.J., McBratney, A.B., 2000. Soil spatial variability. In: E.S. Malcolm (Ed.), Handbook of Soil Science, CRS Press, A-321-A-351.
  • Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. Madison, Wisconsin, USA, pp. 539-579.
  • Özyazıcı, M.A., Dengiz, O., Aydoğan, M., Bayraklı, B., Kesim, E., Urla, Ö., Yıldız, H., Ünal, E., 2016. Orta ve Doğu Karadeniz Bölgesi tarım topraklarının temel verimlilik düzeyleri ve alansal dağılımları. Anadolu Tarım Bilimleri Dergisi, 31(1): 136-148.
  • Paustian, K., Babcock, B., Kling, C., Hatfield, J.L., Lal, R., Mccarl, B., Mclaughlin, S., Post, W.M., Mosier, A.R., Rice, C., Robertson, G.P., Rosenberg, N.J., Rosenzweig, C., Schlesinger, W.H., Zilberman, D., 2004. Climate Change and Greenhouse Gas Mitigation: Challenges and Opportunities for Agriculture. Council for Agricultural Science and Technology, Task Force Report No. 141.
  • Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N., 1998. CO2 mitigation by agriculture: An overview. Climatic Change, 40: 135-162.
  • Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G., 1982. Soil carbon pools and world life zones. Nature, 298: 156-159.
  • Post, W.M., Kwon, K.C., 2000. Soil organic carbon sequestration and land use change: Processes and potential. Global Change Biology, 6(3): 317-327.
  • Saha Debasish Kukal, S.S., Sharma, S., 2011. Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant and Soil, 339: 457-470.
  • Sandra, H., Thomas, A., Jens, L., Peter, W., 2008. The effects of tillage system on soil organic carbon under moist, cold-temperature conditions. Soil Tillage Resources, 98(1): 94-105.
  • Sotomayor, D., Rice, C.W., 1999. Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation. Journal of Environmental Quality, 28: 784-793.
  • Swift, R.S., 2001. Sequestration of carbon by soil. Soil Science, 166(11): 858-871.
  • Tejada, M., Gonzalez, J.L., 2007. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil and Tillage Research, 93(1): 197-205.
  • Tolunay, D., Çömez, A., 2008. Türkiye ormanlarında toprak ve ölü örtüde depolanmış organik karbon miktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu, 22-25 Ekim, Hatay, s. 750-765.
  • Van Wambeke, A.R., 2000. The Newhall Simulation Model for Estimating Soil Moisture & Temperature Regimes. Department of Crop and Soil Sciences, U.S. Departmanet of Agriculture, Ithaca, N.Y., Washington, DC, pp. 9.
  • Weindorf, D.C., Zhu, Y., 2010. Spatial variability of soil properties at capulin volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2): 185-197.
  • West, T.O., Post, W.M., 2002. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America, 66(6): 1930-1946.
  • White, A., Cannell, M.G.R., Friend, A.D., 1999. Climate change impacts on ecosystems and the terrestrial carbon sink: A new assessment. Global Environmental Change, 9(1): 21-30.
  • Wilding, L.P., 1985. Spatial variability: It's documentation, accommodation and implication to soil surveys. In: D.R. Nielsen and J. Bouma (Eds.), Soil Spatial Variability, Pudoc, Wageningen, The Netherlands, pp. 166-194.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Merve Yılmaz 0000-0002-0526-4545

Orhan Dengiz 0000-0002-0458-6016

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Yılmaz, M., & Dengiz, O. (2021). Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 8(2), 154-167. https://doi.org/10.19159/tutad.865188
AMA Yılmaz M, Dengiz O. Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi. TÜTAD. June 2021;8(2):154-167. doi:10.19159/tutad.865188
Chicago Yılmaz, Merve, and Orhan Dengiz. “Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı Ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 8, no. 2 (June 2021): 154-67. https://doi.org/10.19159/tutad.865188.
EndNote Yılmaz M, Dengiz O (June 1, 2021) Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi. Türkiye Tarımsal Araştırmalar Dergisi 8 2 154–167.
IEEE M. Yılmaz and O. Dengiz, “Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi”, TÜTAD, vol. 8, no. 2, pp. 154–167, 2021, doi: 10.19159/tutad.865188.
ISNAD Yılmaz, Merve - Dengiz, Orhan. “Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı Ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 8/2 (June 2021), 154-167. https://doi.org/10.19159/tutad.865188.
JAMA Yılmaz M, Dengiz O. Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi. TÜTAD. 2021;8:154–167.
MLA Yılmaz, Merve and Orhan Dengiz. “Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı Ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 8, no. 2, 2021, pp. 154-67, doi:10.19159/tutad.865188.
Vancouver Yılmaz M, Dengiz O. Bazı Toprak Özellikleri İle İlişkili Olarak Arazi Kullanımı ve Arazi Örtüsünün Toprak Organik Karbon Stokuna Etkisi. TÜTAD. 2021;8(2):154-67.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667