Research Article
BibTex RIS Cite

Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi

Year 2023, Volume: 10 Issue: 1, 1 - 10, 14.04.2023
https://doi.org/10.19159/tutad.1176454

Abstract

Bu çalışmada, GAP ve Çukurova koşullarında yetiştirilen tatlı sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] genotiplerinin biyokütlesinin bazı özelliklerinin ve teorik selülozik biyoetanol potansiyelinin belirlenmesi amaçlanmıştır. Bu bağlamda, yurt içi ve yurt dışındaki değişik kaynaklardan temin edilen 49 farklı tatlı sorgum [S. bicolor var. saccharatum (L.) Mohlenbr.] genotipi materyal olarak kullanılmıştır. Tarla denemeleri 2015 yılında, Çukurova (Adana) ve GAP (Şanlıurfa) lokasyonlarında ikinci ürün koşullarında yürütülmüştür. Tatlı sorgum genotiplerinin biyokütlesinin kuru madde bazında; nem, kül, selüloz, hemiselüloz ve lignin analizleri yapılmış; teorik selülozik biyoetanol verimleri hesaplanmıştır. Çalışma bulgularına göre, incelenen tüm özellikler bakımından her iki lokasyonda da genotipler arasındaki farklılık p≤0.01 seviyesinde istatistiki olarak önemli bulunmuştur. Çukurova lokasyonunda genotiplerin nem içeriği % 77.21-90.82, kül içeriği % 5.26-11.01, selüloz içeriği % 20.42-33.27, hemiselüloz içeriği % 15.90-24.58, lignin içeriği % 3.53-9.67, teorik selülozik biyoetanol verimi 121.5-192.1 L ton-1 biyokütle ve 205.9-1428.5 L da-1 arasında değişmiştir. GAP lokasyonunda ise genotiplerin nem içeriği % 64.80-88.07, kül içeriği % 4.60-10.46, selüloz içeriği % 18.35-27.92, hemiselüloz içeriği % 15.60-24.22, lignin içeriği % 3.83-9.12, teorik selülozik biyoetanol verimi 115.9-164.1 L ton-1 biyokütle ve 352.7-1348.1 L da-1 arasında değişmiştir. Çukurova lokasyonunda UNL-hybrid-3, PI579753 ve Theis genotiplerinin, GAP lokasyonunda ise No41, Corina ve Topper 76 genotiplerinin diğer genotiplere göre daha yüksek teorik biyoetanol verimine sahip oldukları saptanmıştır. Ayrıca Cowley, M81-E, PI579753, Smith, Theis, Topper 76, No91 ve No41 genotiplerinin her iki lokasyonda 1000 L da-1 üzerinde teorik biyoetanol verimine sahip ortak genotipler oldukları belirlenmiştir. Çalışma sonucunda, Türkiye koşullarında farklı lokasyonlarda birim alandan yüksek biyoetanol verimi ile tatlı sorgum bitkisinin, farklı enerji kaynaklarının arayışının daha da arttığı günümüzde önemli bir alternatif tarımsal kaynak olabileceği sonucuna ulaşılmaktadır.

References

  • Açıkgöz, N., Açıkgöz, N., 2001. Tarımsal araştırmaların istatistiki değerlendirilmesinde yapılan bazı hatalar: I. Tek faktörlü denemeler. Anadolu, 11(1): 135-147.
  • Akhtar, N., Gupta, K., Goyal, D., Goyal, A., 2019. Lignocellulosic biomass Characteristics for bioenergy application: An overview. Environmental Engineering and Management Journal, 18(2): 367-383.
  • Arif, A.B., Budiyanto, A., Diyono, W., Hayuningtyas, M., Marwati, T., Sasmitaloka, K.S., Richana, N., 2019. Bioethanol production from sweet sorghum bagasse through enzymatic process. IOP Conference. Series: Earth and Environmental Science, 309: 012033.
  • Badger, P.C., 2002. Ethanol from cellulose: A general review. In: J. Janick and A. Whipkey (Eds.), Trends in New Crops and New Uses, Alexandria, VA, pp. 17-21.
  • Batog, J., Frankowski, J., Wawro, A., Lacka, A., 2020. Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies, 13(23): 6291.
  • Chauhan, N.M., Hajare, S.T., Mamo, B., Madebo, A.A., 2021. Bioethanol production from stalk residues of Chiquere and Gebabe varieties of sweet sorghum. International Journal of Microbiology, 12: 1-16.
  • Damay, J., Boboescu, I.Z., Beigbeder, J.B., Duret, X., Beauchemin, S., Lalonde, O., Lavoie, J.M., 2019. Single-stage extraction of whole sorghum extractives and hemicelluloses followed by their conversion to ethanol. Industrial Crops & Products, 137: 636-645.
  • Dey, P., Pal, P., Kevin, J.D., Das, D.B., 2018. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process–a critical review. Reviews in Chemical Engineering, 36(3): 333-367.
  • Diallo, B., Li, M., Tang, C., Ameen, A., Zhang, W., Xie, G.H., 2019. Biomass yield, chemical composition and theoretical ethanol yield for different genotypes of energy sorghum cultivated on marginal land in China. Industrial Crops & Products, 137: 221-230.
  • Erdurmuş, C., Yücel, C., Çınar, Ç., Yegin, A.B., Öten, M., 2018. Bioethanol and sugar yields of sweet sorghum. The International Journal of Engineering and Science, 7(11): 21-26.
  • Fagundes, T.G., Romeiro Lombardi, G.M., Alencar Lopes, A.C., Fernandes Filho, C.C., Lopes, L.S., Costa Parrella, R.A., Duarte, W.F., Rodrigues Nunes, J.A., 2021. Characterization of sweet sorghum senotypes based on agroindustrial performance and fermentation potential. Sugar Tech, 23(4): 881-890.
  • İnal, İ., Yücel, C., Yücel, D., Hatipoğlu, R., 2021. Nutritive value and fodder potential of different sweet sorghum genotypes under Mediterranean conditions. Turkish Journal of Field Crops, 26(1): 1-7.
  • Jung, S-J., Kim, S-H., Chung, I-M., 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy, 83: 322-327.
  • Kutlu, H.R., 2008. Yem Değerlendirme ve Analiz Yöntemleri. Çukurova Üniversitesi Ziraat Fakültesi, Zootekni Bölümü Ders Notu, Adana.
  • Martins, R.P., Schmatz, A.A., Freita, L.A., Rossini Mutton, M.J., Brienzo, M., 2021. Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Industrial Crops & Products, 170(1): 113813.
  • Pimentel, L.D., Pereira Batista, V.A., Barros, A.F., Teofilo, R.F., Santos Dias, L.A., 2017. Chemical and bioenergetic characterization of sorghum agronomic groups. Pesquisa Agropecuaria. Tropical, 47(4): 424-431.
  • Reddy, B.V.S., Sanjana, R.P., 2003. Sweet sorghum: characteristics and potential. International Sorghum and Millets Newsletter, 44: 26-28.
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Method for dietary fiber, neutral detergent fiber and nostarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71: 475-501.
  • Zhao, Y.L., Dolat, A., Steinberger, Y., Wanga, X., Osman, A., Xie, G.H., 2009. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research, 111: 55-64.

Determination of Cellulosic Bioethanol Yields of Some Sweet Sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotypes

Year 2023, Volume: 10 Issue: 1, 1 - 10, 14.04.2023
https://doi.org/10.19159/tutad.1176454

Abstract

In this study, it was aimed to determine some characteristics and theoretical cellulosic bioethanol potential in the biomass of sweet sorghum genotypes grown under GAP and Çukurova conditions. In this sense, 49 different sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] genotypes obtained from various domestic and foreign sources were evaluated as material. Field experiments were conducted under second-crop conditions in Çukurova (Adana) and GAP (Şanlıurfa) locations in 2015. Moisture, ash, cellulose, hemicellulose and lignin content analysis based on the dry matter were performed in the biomass of the sweet sorghum genotypes and theoretical cellulosic bioethanol yields were calculated. Based on the study findings, the difference between genotypes in both locations in terms of all parameters examined was statistically significant at p≤0.01 level. In the Çukurova location, moisture, ash, cellulose, hemicellulose and lignin contents of genotypes changed between 77.21-90.82%, 5.26-11.01%, 20.42-33.27%, 15.90-24.58%, and 3.53-9.67%, respectively. Also, theoretical cellulosic bioethanol yield was obtained as 121.5- 192.1 L ton-1 biomass and 205.9-1428.5 L da-1. For genotypes in GAP location; moisture, ash, cellulose, hemicellulose and lignin contents changed between 64.80-88.07%, 4.60-10.46%, 18.35-27.92%, 15.60-24.22%, and 3.83-9.12%, respectively. Theoretical cellulosic bioethanol yield was obtained as 115.9-164.1 L ton-1 biomass and 352.7-1348.1 L da-1. UNL-hybrid-3, PI579753, and Theis genotypes for the Çukurova location and No41, Corina and Topper 76 genotypes for the GAP location had higher theoretical cellulosic bioethanol yield than other genotypes. In addition, it was determined that Cowley, M81-E, PI579753, Smith, Theis, Topper 76, No91, and No41 genotypes were common genotypes with a theoretical bioethanol yield above 1000 L da-1 in both locations. As a result of the study, it is concluded that the sweet sorghum plant, with its high bioethanol yield per unit area in different locations in Türkiye conditions, can be an important alternative agricultural resource today, where the search for different energy sources is increasing.

References

  • Açıkgöz, N., Açıkgöz, N., 2001. Tarımsal araştırmaların istatistiki değerlendirilmesinde yapılan bazı hatalar: I. Tek faktörlü denemeler. Anadolu, 11(1): 135-147.
  • Akhtar, N., Gupta, K., Goyal, D., Goyal, A., 2019. Lignocellulosic biomass Characteristics for bioenergy application: An overview. Environmental Engineering and Management Journal, 18(2): 367-383.
  • Arif, A.B., Budiyanto, A., Diyono, W., Hayuningtyas, M., Marwati, T., Sasmitaloka, K.S., Richana, N., 2019. Bioethanol production from sweet sorghum bagasse through enzymatic process. IOP Conference. Series: Earth and Environmental Science, 309: 012033.
  • Badger, P.C., 2002. Ethanol from cellulose: A general review. In: J. Janick and A. Whipkey (Eds.), Trends in New Crops and New Uses, Alexandria, VA, pp. 17-21.
  • Batog, J., Frankowski, J., Wawro, A., Lacka, A., 2020. Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies, 13(23): 6291.
  • Chauhan, N.M., Hajare, S.T., Mamo, B., Madebo, A.A., 2021. Bioethanol production from stalk residues of Chiquere and Gebabe varieties of sweet sorghum. International Journal of Microbiology, 12: 1-16.
  • Damay, J., Boboescu, I.Z., Beigbeder, J.B., Duret, X., Beauchemin, S., Lalonde, O., Lavoie, J.M., 2019. Single-stage extraction of whole sorghum extractives and hemicelluloses followed by their conversion to ethanol. Industrial Crops & Products, 137: 636-645.
  • Dey, P., Pal, P., Kevin, J.D., Das, D.B., 2018. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process–a critical review. Reviews in Chemical Engineering, 36(3): 333-367.
  • Diallo, B., Li, M., Tang, C., Ameen, A., Zhang, W., Xie, G.H., 2019. Biomass yield, chemical composition and theoretical ethanol yield for different genotypes of energy sorghum cultivated on marginal land in China. Industrial Crops & Products, 137: 221-230.
  • Erdurmuş, C., Yücel, C., Çınar, Ç., Yegin, A.B., Öten, M., 2018. Bioethanol and sugar yields of sweet sorghum. The International Journal of Engineering and Science, 7(11): 21-26.
  • Fagundes, T.G., Romeiro Lombardi, G.M., Alencar Lopes, A.C., Fernandes Filho, C.C., Lopes, L.S., Costa Parrella, R.A., Duarte, W.F., Rodrigues Nunes, J.A., 2021. Characterization of sweet sorghum senotypes based on agroindustrial performance and fermentation potential. Sugar Tech, 23(4): 881-890.
  • İnal, İ., Yücel, C., Yücel, D., Hatipoğlu, R., 2021. Nutritive value and fodder potential of different sweet sorghum genotypes under Mediterranean conditions. Turkish Journal of Field Crops, 26(1): 1-7.
  • Jung, S-J., Kim, S-H., Chung, I-M., 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy, 83: 322-327.
  • Kutlu, H.R., 2008. Yem Değerlendirme ve Analiz Yöntemleri. Çukurova Üniversitesi Ziraat Fakültesi, Zootekni Bölümü Ders Notu, Adana.
  • Martins, R.P., Schmatz, A.A., Freita, L.A., Rossini Mutton, M.J., Brienzo, M., 2021. Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Industrial Crops & Products, 170(1): 113813.
  • Pimentel, L.D., Pereira Batista, V.A., Barros, A.F., Teofilo, R.F., Santos Dias, L.A., 2017. Chemical and bioenergetic characterization of sorghum agronomic groups. Pesquisa Agropecuaria. Tropical, 47(4): 424-431.
  • Reddy, B.V.S., Sanjana, R.P., 2003. Sweet sorghum: characteristics and potential. International Sorghum and Millets Newsletter, 44: 26-28.
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Method for dietary fiber, neutral detergent fiber and nostarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71: 475-501.
  • Zhao, Y.L., Dolat, A., Steinberger, Y., Wanga, X., Osman, A., Xie, G.H., 2009. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research, 111: 55-64.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mine Aksoy 0000-0002-3173-6577

Ayşegül Çelik 0000-0002-5769-5005

Mahmut Dok 0000-0002-1558-7452

Celal Yücel 0000-0001-6792-5890

Abdullah Öktem 0000-0001-5247-7044

Publication Date April 14, 2023
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Aksoy, M., Çelik, A., Dok, M., Yücel, C., et al. (2023). Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 10(1), 1-10. https://doi.org/10.19159/tutad.1176454
AMA Aksoy M, Çelik A, Dok M, Yücel C, Öktem A. Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi. TÜTAD. April 2023;10(1):1-10. doi:10.19159/tutad.1176454
Chicago Aksoy, Mine, Ayşegül Çelik, Mahmut Dok, Celal Yücel, and Abdullah Öktem. “Bazı Tatlı Sorgum [Sorghum Bicolor Var. Saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 10, no. 1 (April 2023): 1-10. https://doi.org/10.19159/tutad.1176454.
EndNote Aksoy M, Çelik A, Dok M, Yücel C, Öktem A (April 1, 2023) Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi 10 1 1–10.
IEEE M. Aksoy, A. Çelik, M. Dok, C. Yücel, and A. Öktem, “Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi”, TÜTAD, vol. 10, no. 1, pp. 1–10, 2023, doi: 10.19159/tutad.1176454.
ISNAD Aksoy, Mine et al. “Bazı Tatlı Sorgum [Sorghum Bicolor Var. Saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 10/1 (April 2023), 1-10. https://doi.org/10.19159/tutad.1176454.
JAMA Aksoy M, Çelik A, Dok M, Yücel C, Öktem A. Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi. TÜTAD. 2023;10:1–10.
MLA Aksoy, Mine et al. “Bazı Tatlı Sorgum [Sorghum Bicolor Var. Saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 10, no. 1, 2023, pp. 1-10, doi:10.19159/tutad.1176454.
Vancouver Aksoy M, Çelik A, Dok M, Yücel C, Öktem A. Bazı Tatlı Sorgum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Genotiplerinin Selülozik Biyoetanol Verimlerinin Belirlenmesi. TÜTAD. 2023;10(1):1-10.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667