Review
BibTex RIS Cite

Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim

Year 2025, Volume: 12 Issue: 3, 365 - 373, 31.10.2025
https://doi.org/10.19159/tutad.1752901

Abstract

Gezegenin insan kaynaklı müdahaleleri sonucu maruz kaldığı küresel ısınmaya bağlı olarak gelişen iklim değişikliği, Dünya Meteoroloji Örgütü’nün verilerine göre, 2024 yılında 1.5 °C küresel artış oranıyla şimdiye kadar kaydedilen en sıcak yıl olarak ilan edilmiştir. Dünya Meteoroloji Örgütü’nün 2025 verilerine göre ise küresel ortalama sıcaklık, sanayi öncesi döneme (1850-1900) kıyasla yaklaşık 1.55 ± 0.13 °C daha yüksek ölçülmüştür. Birleşmiş Milletler Gıda ve Tarım Örgütü verilerine göre, hayvancılık sektörü, yıllık yaklaşık 7.1 gigaton karbondioksit eşdeğeri (CO₂-eq) sera gazı salımı ile toplam insan kaynaklı emisyonların yaklaşık % 14.5’ini oluşturmaktadır. Toplam sera gazı emisyonlarının yaklaşık % 44’ü geviş getiren hayvanlarda gerçekleşen enterik fermantasyon sonucu oluşan metan (CH₄), % 23.3’ü gübre yönetimindeki yetersiz uygulamalardan kaynaklanan CH₄ ve nitröz oksit (N₂O), % 9’u ise yem üretimi ve arazi kullanımına bağlı emisyonlardan oluşmaktadır. Çiftlik hayvanları arasında en yüksek emisyon payı sığırlara (% 62) ait olup, bunu domuzlar (% 14), tavuklar (% 9), mandalar (% 8) ve koyun-keçiler (% 7) izlemektedir. Koyun ve keçilerin etkisinin düşük olmasında, serbest hayvancılık uygulamaları ve doğal mera alanlarına dayalı beslenme sistemi etkili olmaktadır. İklim değişikliği; ısı stresine bağlı verim kayıpları, hayvansal ürünlerin besin kalitesinde azalma, hayvanlarda üreme performansının düşmesi, hayvan refahının olumsuz etkilenmesi, zoonoz hastalıklarda artış ve bu hastalıkların vektörel yayılımına zemin hazırlamaktadır. Aynı zamanda mera kalitesinde bozulma, yem bitkilerinin azalması, ekonomik tarımsal sürdürülebilirliğin ve küresel gıda güvenliğinin tehdit altına girmesi gibi çok yönlü olumsuzluklara yol açmaktadır. İklim değişikliği, hayvansal üretimi olumsuz etkilerken hayvansal üretim kaynaklı sera gazı emisyonları da iklim değişikliğini doğrudan tetiklemekte ve bu döngü, çift yönlü bir nedensellik ilişkisini ortaya çıkarmaktadır. Bu diyalektik ilişki endüstriyel hayvancılık sistemlerinde yapısal dönüşüm ihtiyacını gündeme getirmekte ve ekolojik temelli, doğal üretim modellerine geçişi zorunlu kılmaktadır. Bu çalışmanın amacı, iklim değişikliğinin hayvansal üretim üzerindeki etkilerini ve hayvancılık kaynaklı sera gazı emisyonlarının küresel ısınmaya katkısını bütüncül bir bakış açısıyla değerlendirmektir.

References

  • Andrade, H.J., Vega, A., Martínez-Salinas, A., Villanueva, C., Jiménez-Trujillo, J.A., Betanzos-Simon, J.E., Pérez, E., Ibrahim, M., Sepúlveda, L.C.J., 2024. The carbon footprint of livestock farms under conventional management and silvopastoral systems in Jalisco, Chiapas, and Campeche (Mexico). Frontiers in Sustainable Food Systems, 8: 1363994.
  • Anonymous, 2010. Global Livestock Environmental Assessment Model 2.0. Food and Agriculture Organization of the United Nations, (http://www.fao.org/gleam/results/en), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, (https://www.cambridge.org/core/books/climate-change-2013-the-physical-science-basis/BE9453E5 00DEF3640B383BADDC332C3E), (Erişim Tarihi: 15.05.2025).
  • Anonymous, 2022. Success or Failure? The Kyoto Protocol’s Troubled Legacy. Foresight, (https://www.climateforesight.eu/articles/success-or-failure-the-kyoto-protocols-troubled-legacy/), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2023. Pathways Towards Lower Emissions: A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems. Rome: Food and Agriculture Organization, (https://www.fao.org/documents/card/ en/c/cc6365en), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2024. New Global Climate Actions: Assessments from COP29. United Nations Climate Change, (https://unfccc.int/cop29), (Erişim Tarihi: 17.07.2025).
  • Anonymous, 2025a. What is Climate Change? Nasa Science, (https://www.science.nasa.gov/climate-change/what-is-climate-change), (Erişim Tarihi: 18.07.2025).
  • Anonymous, 2025b. World Meteorological Organization (https://wmo.int/), (Erişim Tarihi: 19.06.2025). Anonymous, 2025c. The Paris Agreement. United Nations Climate Change, (https://unfccc.int/process-and-meetings/the-paris-agreement), (Erişim tarihi: 15.06.2025).
  • Anwar, A.A., Fırıncıoğlu, S.Y., 2024. Impacts of climate change on animal production and product quality. Eurasian Journal of Agricultural Research, 8(1): 107-121.
  • Babinszky, L., Halas, V., Verstegen, M.W.A., 2011. Impacts of climate change on animal production and quality of animal food products. In: H. Kheradmand and J.A. Blanco (Eds.), Climate Change: Socioeconomic Effects, pp. 165-190.
  • Bashiru, H.A., Oseni, S.O., 2025. Simplified climate change adaptation strategies for livestock development in low- and middle-income countries. Frontiers in Sustainable Food Systems, 9: 1566194.
  • Bateki, C.A., Wassie, S.E., Wilkes, A., 2023. The contribution of livestock to climate change mitigation: A perspective from a low-income country. Carbon Management, 14(1): 1-14.
  • Ben Moula, A., Kchikich, A., Chentouf, M., Hamdache, A., Bouraada, K., Essafi, M., Ezziyyani, M., 2024. Climate change impacts on sheep and goat production and reproduction. Journal of Central European Agriculture, 25(4): 910-918.
  • Bevacqua, E., Schleussner, C.F., Zscheischler, J., 2025. A year above 1.5° C signals that Earth is most probably within the 20-year period that will reach the Paris Agreement limit. Nature Climate Change, 15(3): 262-265.
  • Cartwright, S.L., Schmied, J., Karrow, N., Mallard, B.A., 2023. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Frontiers in Veterinary Science, 10: 1198697.
  • Emami, N.K., Greene, E.S., Kogut, M.H., Dridi, S., 2021. Heat stress and feed restriction distinctly affect performance, carcass and meat yield, intestinal integrity, and inflammatory (chemo) cytokines in broiler chickens. Frontiers in Physiology, 12: 707757.
  • Emediegwu, L.E., Ubabuko, C.L., 2023. Re-examining the impact of annual weather fluctuations on global livestock production. Ecological Economics, 204: 107662.
  • Forster, P.M., Smith, C., Walsh, T., Lamb, W.F., Lamboll, R., Cassou, C., Hauser, M., Hausfather, Z., Lee, J-Y., Palmer, M.D., von Schuckmann, K., Slangen, A.B.A., Szopa, S., Trewin, B., Yun, J., Gillett, N.P., Jenkins, S., Matthews, H.D., Raghavan, K., Ribes, A., Rogelj, J., Rosen, D., Zhang, X., Allen, M., Reis, L.A., Andrew, R.M., Betts, R.A., Borger, A., Broersma, J.A., Burgess, S.N., Cheng, L., Friedlingstein, P., Domingues, C.M., Gambarini, M., Gasser, T., Gütschow, J., Ishii, M., Kadow, C., Kennedy, J., Killick, R.E., Krummel, P.B., Liné, A., Monselesan, D.P., Morice, C., Mühle, J., Naik, V., Peters, G.P., Pirani, A., Pongratz, J., Minx, J.C., Rigby, M., Rohde, R., Savita, A., Seneviratne, S.I., Thorne, P., Wells, C., Western, L.M., van der Werf, G.R., Wijffels, S.E., Masson-Delmotte, V., Zhai, P., 2025. Indicators of Global Climate Change 2024: Annual update of key indicators of the state of the climate system and human influence. Earth System Science Data, 17(6): 2641-2680.
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling Climate Change Through Livestock-A Global Assessment of Emissions and Mitigation Opportunities. FAO, Rome.
  • Godde, C.M., Mason-D’Croz, D., Mayberry, D.E., Thornton, P.K., Herrero, M., 2021. Impacts of climate change on the livestock food supply chain: A review of the evidence. Global Food Security, 28: 100488.
  • Hu, J., Dong, J., Xu, D., Yang, Q., Liang, J., Li, N., Wang, H., 2024. Trends in global agricultural carbon emission research: A bibliometric analysis. Agronomy, 14(11): 2617.
  • Kakar, A.K., Panezai, S., Saqib, S., 2023. Impacts of climate change on livestock and adaptation: A meta-analysis. Journal of Engineering and Technology Edition, 42(3): 568-587.
  • Li, L., Awada, T., Shi, Y., Jin, V.L., Kaiser, M., 2025. Global greenhouse gas emissions from agriculture: Pathways to sustainable reductions. Global Change Biology, 31(1): e70015.
  • Lima, M.M.C., 2025. The livestock sector’s contribution to climate change: Reflections on the role of selected international institutions. Environmental Policy and Law, 55(2-3): 91-103.
  • Liu, J., Li, L., Chen, X., Lu, Y., Wang, D., 2019. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress-A review. Asian-Australasian Journal of Animal Sciences, 32(9): 1332.
  • Naqvi, S.Z.H., Maqbool, B., Arshad, M.I., Aderibigbe, A., Gul, S.T., 2024. Food security and livestock: A comprehensive review of sustainability, challenges and innovative solutions. Agrobiological Records, 20: 50-58.
  • Opio, C., 2020. Livestock under climate change: Adaptation of livestock systems to climate change. Koronivia Workshop, Improved Livestock Management Systems Including Agropastoral Production Systems and Others, November 24, Panama.
  • Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A., 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16: 145-163.
  • Sejian, V., Bhatta, R., Gaughan, J.B., Dunshea, F.R., Lacetera, N., 2018. Adaptation of animals to heat stress. Animal, 12(2): 431-444.
  • Sejian, V., Silpa, M.V., Reshma Nair, M.R., Devaraj, C., Krishnan, G., Bagath, Chauhan, S.S., Suganthi, R.U., Fonseca, V.F.C., König, S., Gaughan, J.B., Dunshea, F.R., Bhatta, R., 2021. Heat stress and goat welfare: Adaptation and production considerations. Animals, 11(4): 1021.
  • Sicuso, D.A., Previti, A., Pugliese, M., Passantino, A., 2025. Climate change impacts on livestock and resulting effects on animal health: current challenges in food safety, consumer protection, and animal welfare. Journal of Consumer Protection and Food Safety, 20(1): 1-3.
  • Singh, B., Singh, A., Jadoun, Y.S., Bhadauria, P., Kour, G., 2024. Strategies for sustainable climate smart livestock farming. In: S.S. Mahdi, R. Singh. and B. Dhekale (Eds.), Adapting to Climate Change in Agriculture-Theories and Practices, in India, Cham: Springer Nature, Switzerland, pp. 341-359.
  • Thoma, G., Jolliet, O., Wang, Y., 2013. A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. International Dairy Journal, 31(1): 41-49.
  • Tseten, T., Sanjorjo, R.A., Kwon, M., Kim, S.W., 2022. Strategies to mitigate enteric methane emissions from ruminant animals. Journal of Microbiology and Biotechnology, 32(3): 269.
  • van Wettere, W.H., Kind, K.L., Gatford, K.L., Swinbourne, A.M., Leu, S.T., Hayman, P.T., Kelly, J.M., Weaver, A.C., Kleemann, D.O., Walker, S.K., 2021. Review of the impact of heat stress on reproductive performance of sheep. Journal of Animal Science and Biotechnology, 12(1): 26.
  • Vásquez, N., Cervantes, M., Bernal-Barragán, H., Rodríguez-Tovar, L.E., Morales, A., 2022. Short- and long-term exposure to heat stress differently affect performance, blood parameters, and integrity of intestinal epithelia of growing pigs. Animals, 12(19): 2529.
  • Xu, X., Sharma, P., Shu, S., Lin, T.-S., Ciais, P., Tubiello, F.N., Smith, P., Campbell, N., Jain, A.K., 2021. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2(8): 724-732.

The Interplay Between Farm Animals and Climate Change

Year 2025, Volume: 12 Issue: 3, 365 - 373, 31.10.2025
https://doi.org/10.19159/tutad.1752901

Abstract

Climate change resulting from anthropogenic global warming has led to significant environmental challenges. According to the World Meteorological Organization (WMO), 2024 was recorded as the hottest year with a global temperature increase of 1.5 °C. The 2025 data indicate that the global average temperature is approximately 1.55 ± 0.13 °C higher than the pre-industrial period (1850-1900). The Food and Agriculture Organization reports that the livestock sector contributes about 7.1 gigatons of carbon dioxide equivalent (CO₂-eq) greenhouse gas emissions annually, representing roughly 14.5% of total anthropogenic emissions. Approximately 44% of total greenhouse gas emissions come from methane (CH₄) produced by enteric fermentation in ruminant animals, 23.3% come from CH₄ and nitrous oxide (N₂O) resulting from inadequate manure management practices, and 9% come from emissions related to feed production and land use. Among farm animals, cattle account for the highest share of emissions (62%), followed by pigs (14%), chickens (9%), buffalo (8%), and sheep and goats (7%). The lower emissions from sheep and goats are related to extensive grazing and reliance on natural pastures. Climate change causes yield losses due to heat stress, a decrease in the nutritional quality of animal products, a decline in reproductive performance in animals, negative effects on animal welfare, an increase in zoonotic diseases, and creates conditions conducive to the vector-borne spread of these diseases. It also leads to multifaceted negative consequences such as deterioration in pasture quality, reduction in forage crops, and threats to economic agricultural sustainability and global food security. While climate change negatively affects animal production, greenhouse gas emissions from animal production also directly trigger climate change, creating a two-way causal relationship. This dialectical relationship highlights the need for structural transformation in industrial livestock systems and necessitates a transition to ecologically based, natural production models. The aim of this study is to assess the effects of climate change on animal production and the contribution of livestock-related greenhouse gas emissions to global warming from a holistic perspective.

References

  • Andrade, H.J., Vega, A., Martínez-Salinas, A., Villanueva, C., Jiménez-Trujillo, J.A., Betanzos-Simon, J.E., Pérez, E., Ibrahim, M., Sepúlveda, L.C.J., 2024. The carbon footprint of livestock farms under conventional management and silvopastoral systems in Jalisco, Chiapas, and Campeche (Mexico). Frontiers in Sustainable Food Systems, 8: 1363994.
  • Anonymous, 2010. Global Livestock Environmental Assessment Model 2.0. Food and Agriculture Organization of the United Nations, (http://www.fao.org/gleam/results/en), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, (https://www.cambridge.org/core/books/climate-change-2013-the-physical-science-basis/BE9453E5 00DEF3640B383BADDC332C3E), (Erişim Tarihi: 15.05.2025).
  • Anonymous, 2022. Success or Failure? The Kyoto Protocol’s Troubled Legacy. Foresight, (https://www.climateforesight.eu/articles/success-or-failure-the-kyoto-protocols-troubled-legacy/), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2023. Pathways Towards Lower Emissions: A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems. Rome: Food and Agriculture Organization, (https://www.fao.org/documents/card/ en/c/cc6365en), (Erişim Tarihi: 17.06.2025).
  • Anonymous, 2024. New Global Climate Actions: Assessments from COP29. United Nations Climate Change, (https://unfccc.int/cop29), (Erişim Tarihi: 17.07.2025).
  • Anonymous, 2025a. What is Climate Change? Nasa Science, (https://www.science.nasa.gov/climate-change/what-is-climate-change), (Erişim Tarihi: 18.07.2025).
  • Anonymous, 2025b. World Meteorological Organization (https://wmo.int/), (Erişim Tarihi: 19.06.2025). Anonymous, 2025c. The Paris Agreement. United Nations Climate Change, (https://unfccc.int/process-and-meetings/the-paris-agreement), (Erişim tarihi: 15.06.2025).
  • Anwar, A.A., Fırıncıoğlu, S.Y., 2024. Impacts of climate change on animal production and product quality. Eurasian Journal of Agricultural Research, 8(1): 107-121.
  • Babinszky, L., Halas, V., Verstegen, M.W.A., 2011. Impacts of climate change on animal production and quality of animal food products. In: H. Kheradmand and J.A. Blanco (Eds.), Climate Change: Socioeconomic Effects, pp. 165-190.
  • Bashiru, H.A., Oseni, S.O., 2025. Simplified climate change adaptation strategies for livestock development in low- and middle-income countries. Frontiers in Sustainable Food Systems, 9: 1566194.
  • Bateki, C.A., Wassie, S.E., Wilkes, A., 2023. The contribution of livestock to climate change mitigation: A perspective from a low-income country. Carbon Management, 14(1): 1-14.
  • Ben Moula, A., Kchikich, A., Chentouf, M., Hamdache, A., Bouraada, K., Essafi, M., Ezziyyani, M., 2024. Climate change impacts on sheep and goat production and reproduction. Journal of Central European Agriculture, 25(4): 910-918.
  • Bevacqua, E., Schleussner, C.F., Zscheischler, J., 2025. A year above 1.5° C signals that Earth is most probably within the 20-year period that will reach the Paris Agreement limit. Nature Climate Change, 15(3): 262-265.
  • Cartwright, S.L., Schmied, J., Karrow, N., Mallard, B.A., 2023. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Frontiers in Veterinary Science, 10: 1198697.
  • Emami, N.K., Greene, E.S., Kogut, M.H., Dridi, S., 2021. Heat stress and feed restriction distinctly affect performance, carcass and meat yield, intestinal integrity, and inflammatory (chemo) cytokines in broiler chickens. Frontiers in Physiology, 12: 707757.
  • Emediegwu, L.E., Ubabuko, C.L., 2023. Re-examining the impact of annual weather fluctuations on global livestock production. Ecological Economics, 204: 107662.
  • Forster, P.M., Smith, C., Walsh, T., Lamb, W.F., Lamboll, R., Cassou, C., Hauser, M., Hausfather, Z., Lee, J-Y., Palmer, M.D., von Schuckmann, K., Slangen, A.B.A., Szopa, S., Trewin, B., Yun, J., Gillett, N.P., Jenkins, S., Matthews, H.D., Raghavan, K., Ribes, A., Rogelj, J., Rosen, D., Zhang, X., Allen, M., Reis, L.A., Andrew, R.M., Betts, R.A., Borger, A., Broersma, J.A., Burgess, S.N., Cheng, L., Friedlingstein, P., Domingues, C.M., Gambarini, M., Gasser, T., Gütschow, J., Ishii, M., Kadow, C., Kennedy, J., Killick, R.E., Krummel, P.B., Liné, A., Monselesan, D.P., Morice, C., Mühle, J., Naik, V., Peters, G.P., Pirani, A., Pongratz, J., Minx, J.C., Rigby, M., Rohde, R., Savita, A., Seneviratne, S.I., Thorne, P., Wells, C., Western, L.M., van der Werf, G.R., Wijffels, S.E., Masson-Delmotte, V., Zhai, P., 2025. Indicators of Global Climate Change 2024: Annual update of key indicators of the state of the climate system and human influence. Earth System Science Data, 17(6): 2641-2680.
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling Climate Change Through Livestock-A Global Assessment of Emissions and Mitigation Opportunities. FAO, Rome.
  • Godde, C.M., Mason-D’Croz, D., Mayberry, D.E., Thornton, P.K., Herrero, M., 2021. Impacts of climate change on the livestock food supply chain: A review of the evidence. Global Food Security, 28: 100488.
  • Hu, J., Dong, J., Xu, D., Yang, Q., Liang, J., Li, N., Wang, H., 2024. Trends in global agricultural carbon emission research: A bibliometric analysis. Agronomy, 14(11): 2617.
  • Kakar, A.K., Panezai, S., Saqib, S., 2023. Impacts of climate change on livestock and adaptation: A meta-analysis. Journal of Engineering and Technology Edition, 42(3): 568-587.
  • Li, L., Awada, T., Shi, Y., Jin, V.L., Kaiser, M., 2025. Global greenhouse gas emissions from agriculture: Pathways to sustainable reductions. Global Change Biology, 31(1): e70015.
  • Lima, M.M.C., 2025. The livestock sector’s contribution to climate change: Reflections on the role of selected international institutions. Environmental Policy and Law, 55(2-3): 91-103.
  • Liu, J., Li, L., Chen, X., Lu, Y., Wang, D., 2019. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress-A review. Asian-Australasian Journal of Animal Sciences, 32(9): 1332.
  • Naqvi, S.Z.H., Maqbool, B., Arshad, M.I., Aderibigbe, A., Gul, S.T., 2024. Food security and livestock: A comprehensive review of sustainability, challenges and innovative solutions. Agrobiological Records, 20: 50-58.
  • Opio, C., 2020. Livestock under climate change: Adaptation of livestock systems to climate change. Koronivia Workshop, Improved Livestock Management Systems Including Agropastoral Production Systems and Others, November 24, Panama.
  • Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A., 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16: 145-163.
  • Sejian, V., Bhatta, R., Gaughan, J.B., Dunshea, F.R., Lacetera, N., 2018. Adaptation of animals to heat stress. Animal, 12(2): 431-444.
  • Sejian, V., Silpa, M.V., Reshma Nair, M.R., Devaraj, C., Krishnan, G., Bagath, Chauhan, S.S., Suganthi, R.U., Fonseca, V.F.C., König, S., Gaughan, J.B., Dunshea, F.R., Bhatta, R., 2021. Heat stress and goat welfare: Adaptation and production considerations. Animals, 11(4): 1021.
  • Sicuso, D.A., Previti, A., Pugliese, M., Passantino, A., 2025. Climate change impacts on livestock and resulting effects on animal health: current challenges in food safety, consumer protection, and animal welfare. Journal of Consumer Protection and Food Safety, 20(1): 1-3.
  • Singh, B., Singh, A., Jadoun, Y.S., Bhadauria, P., Kour, G., 2024. Strategies for sustainable climate smart livestock farming. In: S.S. Mahdi, R. Singh. and B. Dhekale (Eds.), Adapting to Climate Change in Agriculture-Theories and Practices, in India, Cham: Springer Nature, Switzerland, pp. 341-359.
  • Thoma, G., Jolliet, O., Wang, Y., 2013. A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. International Dairy Journal, 31(1): 41-49.
  • Tseten, T., Sanjorjo, R.A., Kwon, M., Kim, S.W., 2022. Strategies to mitigate enteric methane emissions from ruminant animals. Journal of Microbiology and Biotechnology, 32(3): 269.
  • van Wettere, W.H., Kind, K.L., Gatford, K.L., Swinbourne, A.M., Leu, S.T., Hayman, P.T., Kelly, J.M., Weaver, A.C., Kleemann, D.O., Walker, S.K., 2021. Review of the impact of heat stress on reproductive performance of sheep. Journal of Animal Science and Biotechnology, 12(1): 26.
  • Vásquez, N., Cervantes, M., Bernal-Barragán, H., Rodríguez-Tovar, L.E., Morales, A., 2022. Short- and long-term exposure to heat stress differently affect performance, blood parameters, and integrity of intestinal epithelia of growing pigs. Animals, 12(19): 2529.
  • Xu, X., Sharma, P., Shu, S., Lin, T.-S., Ciais, P., Tubiello, F.N., Smith, P., Campbell, N., Jain, A.K., 2021. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2(8): 724-732.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Animal Growth and Development, Zootechny (Other)
Journal Section Review
Authors

İrfan İnan 0009-0007-0084-1394

Murat Turan 0000-0001-9286-3046

Mehmet Bingöl 0000-0002-5822-159X

Publication Date October 31, 2025
Submission Date July 28, 2025
Acceptance Date October 29, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA İnan, İ., Turan, M., & Bingöl, M. (2025). Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim. Türkiye Tarımsal Araştırmalar Dergisi, 12(3), 365-373. https://doi.org/10.19159/tutad.1752901
AMA İnan İ, Turan M, Bingöl M. Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim. Türkiye Tarımsal Araştırmalar Dergisi. October 2025;12(3):365-373. doi:10.19159/tutad.1752901
Chicago İnan, İrfan, Murat Turan, and Mehmet Bingöl. “Çiftlik Hayvanları Ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim”. Türkiye Tarımsal Araştırmalar Dergisi 12, no. 3 (October 2025): 365-73. https://doi.org/10.19159/tutad.1752901.
EndNote İnan İ, Turan M, Bingöl M (October 1, 2025) Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim. Türkiye Tarımsal Araştırmalar Dergisi 12 3 365–373.
IEEE İ. İnan, M. Turan, and M. Bingöl, “Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim”, Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 3, pp. 365–373, 2025, doi: 10.19159/tutad.1752901.
ISNAD İnan, İrfan et al. “Çiftlik Hayvanları Ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim”. Türkiye Tarımsal Araştırmalar Dergisi 12/3 (October2025), 365-373. https://doi.org/10.19159/tutad.1752901.
JAMA İnan İ, Turan M, Bingöl M. Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim. Türkiye Tarımsal Araştırmalar Dergisi. 2025;12:365–373.
MLA İnan, İrfan et al. “Çiftlik Hayvanları Ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 3, 2025, pp. 365-73, doi:10.19159/tutad.1752901.
Vancouver İnan İ, Turan M, Bingöl M. Çiftlik Hayvanları ve İklim Değişikliği Arasındaki Karşılıklı Etkileşim. Türkiye Tarımsal Araştırmalar Dergisi. 2025;12(3):365-73.