Research Article
BibTex RIS Cite

Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome

Year 2025, Volume: 12 Issue: 3, 320 - 333, 31.10.2025
https://doi.org/10.19159/tutad.1769142

Abstract

COBL genes play an important role in the biosynthesis of cellulose, the main component of the cell wall. This study aimed to identify and characterize members of the COBL gene family that have not been characterized in the spinach genome. Eleven COBL members carrying the COBRA and/or COBL domains were found in the spinach genome. Among the So-COBL proteins, So-COBL1 and So-COBL2 are unstable. All So-COBL proteins are hydrophilic and, with aliphatic indices below 100, are not heat-stable. Both tandem and segmental duplications have occurred during the evolution of So-COBL genes. Because the Ka/Ks ratio is less than one, they have been subjected to purifying selection throughout evolution, eliminating deleterious variants. So-COBL genes contain cis elements in their promoter region that respond to many environmental stimuli, particularly hormone and light responses. Phylogeny analysis of spinach, Arabidopsis, and quinoa COBL genes revealed two groups, COBRA and COBL7-like. The intron-exon organization, motif, and domain structure of the genes grouped in the same group are similar. Synteny analysis revealed further orthology between quinoa and spinach. This study highlights the importance of COBL genes for future studies.

References

  • Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., 2015. The MEME suite. Nucleic Acids Research, 43(W1): W39-W49.
  • Ben‐Tov, D., Idan‐Molakandov, A., Hugger, A., Ben‐Shlush, I., Günl, M., Yang, B., Harpaz‐Saad, S., 2018. The role of COBRA‐LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. The Plant Journal, 94(3): 497-512.
  • Blum, M., Andreeva, A., Florentino, L.C., Chuguransky, S.R., Grego, T., Hobbs, E., Bateman, A., 2025. InterPro: The protein sequence classification resource in 2025<? mode longmeta?>. Nucleic Acids Research, 53(D1): D444-D456.
  • Borner, G.H., Lilley, K.S., Stevens, T.J., Dupree, P., 2003. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis: A proteomic and genomic analysis. Plant Physiology, 132(2): 568-577.
  • Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A., Benfey, P.N., 2007. Combining expression and comparative evolutionary analysis: The COBRA gene family. Plant Physiology, 143(1): 172-187.
  • Brinkjost, T., Ehrt, C., Koch, O., Mutzel, P., 2020. SCOT: Rethinking the classification of secondary structure elements. Bioinformatics, 36(8): 2417-2428.
  • Brown, D.M., Zeef, L.A., Ellis, J., Goodacre, R., Turner, S.R., 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell, 17(8): 2281-2295.
  • Cao, Y., Tang, X., Giovannoni, J., Xiao, F., Liu, Y., 2012. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biology, 12(1): 211.
  • Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Xia, R., 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11): 1733-1742.
  • Combet, C., Blanchet, C., Geourjon, C., Deleage, G., 2000. NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25(3): 147-150.
  • Cosgrove, D.J., 2016. Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany, 67(2): 463-476.
  • Dai, X., You, C., Wang, L., Chen, G., Zhang, Q., Wu, C., 2009. Molecular characterization, expression pattern, and function analysis of the OsBC1L family in rice. Plant Molecular Biology, 71(4): 469.
  • Dauda, A., Abbaya, H.Y., Abare, E.A., James, A.K., 2017. Insilico analysis of mycobacterium caprae protein sequence. Journal Animal Production Research, 29(1): 128-135.
  • Gamage, D.G., Gunaratne, A., Periyannan, G.R., Russell, T.G., 2019. Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letters, 26(5): 339-347.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.E., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server. In: J.M. Walker (Eds.), The Proteomics Protocols Handbook, Springer Protocols Handbooks, Humana Press, Totowa, pp. 571-607.
  • Geourjon, C., Deleage, G., 1995. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6): 681-684.
  • Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Rokhsar, D.S., 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1): D1178-D1186.
  • Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307-321.
  • Guruprasad, K., Reddy, B.B., Pandit, M.W., 1990. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2): 155-161.
  • Handakumbura, P.P., Hazen, S.P., 2012. Transcriptional regulation of grass secondary cell wall biosynthesis: playing catch-up with Arabidopsis thaliana. Frontiers in Plant Science, 3: 74.
  • Hassler, M., 2021. World Plants: Synonymic Checklists of the Vascular Plants of the World (Version 2021-03-17). Species 2000 & ITIS Catalogue of Life. (https://www.catalogueoflife.org/annual-checklist/2018).
  • Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33(6): 1635-1638.
  • Hulse‐Kemp, A.M., Bostan, H., Chen, S., Ashrafi, H., Stoffel, K., Sanseverino, W., Van Deynze, A., 2021. An anchored chromosome‐scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. The Plant Genome, 14(2): e20101.
  • Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm, T.J.A., Tester, M., 2017. The genome of Chenopodium quinoa. Nature, 542(7641): 307-312.
  • Khrustalev, V.V., Khrustaleva, T.A., Barkovsky, E.V., 2013. Random coil structures in bacterial proteins. Relationships of their amino acid compositions to flanking structures and corresponding genic base compositions. Biochimie, 95(9): 1745-1754.
  • Korkuć, P., Schippers, J.H., Walther, D., 2014. Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information. Plant Physiology, 164(1): 181-200.
  • Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Huala, E., 2011. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 40(D1): D1202-D1210.
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., van de Peer, Y., Rombauts, S., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327.
  • Letunic I., Bork P., 2011. Interactive tree of life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 39: W475-W478.
  • Li, S., Ge, F.R., Xu, M., Zhao, X.Y., Huang, G.Q., Zhou, L.Z., Zhang, Y., 2013. Arabidopsis COBRA‐LIKE 10, a GPI‐anchored protein, mediates directional growth of pollen tubes. The Plant Journal, 74(3): 486-497.
  • Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Li, J., 2003. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. The Plant Cell, 15(9): 2020-2031.
  • Liu, D., Hunt, M., Tsai, I.J., 2018. Inferring synteny between genome assemblies: A systematic evaluation. BMC Bioinformatics, 19(1): 26.
  • Liu, J., Wu, J., Silaiyiman, S., Ouyang, L., Cao, Z., Shen, C., 2025. Comparative genomics reveals gene duplication and evolution in 26 Aurantioideae species. Horticulturae, 11(2): 209.
  • Liu, L., Shang-Guan, K., Zhang, B., Liu, X., Yan, M., Zhang, L., Zhou, Y., 2013. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS genetics, 9(8): e1003704.
  • MacMillan, C.P., Mansfield, S.D., Stachurski, Z.H., Evans, R., Southerton, S.G., 2010. Fasciclin‐like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal, 62(4): 689-703.
  • Maughan, P.J., Bonifacio, A., Coleman, C.E., Jellen, E.N., Stevens, M.R., Fairbanks, D.J., 2007. Quinoa (Chenopodium quinoa). In: C. Kole (Eds.), Pulses, Sugar and Tuber Crops, Genome Mapping and Molecular Breeding in Plants, Vol 3, Springer, Berlin, Heidelberg, pp. 147-158.
  • Morelock, T.E., Correll, J.C. 2008. Spinach. In: J. Prohens and F. Nuez (Eds.), Handbook of Plant Breeding, Vegetables I.: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae, Springer, New York, NY, pp. 189-218.
  • Niu, E., Shang, X., Cheng, C., Bao, J., Zeng, Y., Cai, C., Guo, W., 2015. Comprehensive analysis of the COBRA-like (COBL) gene family in gossypium identifies two COBL s potentially associated with fiber quality. PloS One, 10(12): e0145725.
  • Peters, J., Jin, C., Luczak, A., Lyons, B., Kalyanaraman, R., 2025. Machine learning enabled protein secondary structure characterization using drop-coating deposition Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 259: 116762.
  • Ramaiyan, B., Kour, J., Nayik, G.A., Anand, N., Alam, M.S., 2020. Spinach (Spinacia oleracea L.). In: G.A. Nayik and A. Gull (Eds.), Antioxidants in Vegetables and Nuts - Properties and Health Benefits, Springer, Singapore, pp. 159-173.
  • Rao, J., Huang, Z., Chen, Z., Liu, H., Zhang, X., Cen, X., Ren, Y., 2023. Identification and expression profiles of xylogen-like arabinogalactan protein (XYLP) gene family in Phyllostachys edulis in different developmental tissues and under various abiotic stresses. International Journal of Biological Macromolecules, 227: 1098-1118.
  • Ren, P., Ma, L., Bao, W., Wang, J., 2024. Genome-wide ıdentification and hormone response analysis of the cobl gene family in barley. Genes, 15(5): 612.
  • Roudier, F., Fernandez, A.G., Fujita, M., Himmelspach, R., Borner, G.H., Schindelman, G., Benfey, P.N., 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. The Plant Cell, 17(6): 1749-1763.
  • Roudier, F., Schindelman, G., DeSalle, R., Benfey, P.N., 2002. The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiology, 130(2): 538-548.
  • Sajjad, M., Ahmad, A., Riaz, M.W., Hussain, Q., Yasir, M., Lu, M.Z., 2023. Recent genome resequencing paraded COBRA-Like gene family roles in abiotic stress and wood formation in Poplar. Frontiers in Plant Science, 14: 1242836.
  • Sangi, S., Araújo, P.M., Coelho, F.S., Gazara, R.K., Almeida-Silva, F., Venancio, T.M., Grativol, C., 2021. Genome-wide analysis of the cobra-like gene family supports gene expansion through whole-genome duplication in soybean (Glycine max). Plants, 10(1): 167.
  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Von Mering, C., 2023. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1): D638-D646.
  • Urry, D.W., 2004. The change in Gibbs free energy for hydrophobic association: Derivation and evaluation by means of inverse temperature transitions. Chemical Physics Letters, 399(1-3): 177-183.
  • Vaahtera, L., Schulz, J., Hamann, T., 2019. Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants, 5(9): 924-932.
  • Wallin, E., Heijne, G.V., 1998. Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 7(4): 1029-1038.
  • Wang, J., Chitsaz, F., Derbyshire, M.K., Gonzales, N.R., Gwadz, M., Lu, S., Marchler-Bauer, A., 2023. The conserved domain database in 2023. Nucleic Acids Research, 51(D1): D384-D388.
  • Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Paterson, A.H., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7): e49-e49.
  • Wright, P.E., Dyson, H.J., 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nature reviews Molecular Cell Biology, 16(1): 18-29.
  • Yang, Q., Wang, S., Chen, H., You, L., Liu, F., Liu, Z., 2021. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed (Brassica napus L.). PloS One, 16(11): e0260268.
  • Zaheer, M., Rehman, S.U., Khan, S.H., Shahid, S., Rasheed, A., Naz, R., Sajjad, M., 2022. Characterization of new COBRA like (COBL) genes in wheat (Triticum aestivum) and their expression analysis under drought stress. Molecular Biology Reports, 49(2): 1379-1387.
  • Zhang, Z., 2022. KaKs_Calculator 3.0: Calculating selective pressure on coding and non-coding sequences. Genomics, Proteomics and Bioinformatics, 20(3): 536-540.
  • Zhao, T., Schranz, M.E., 2017. Network approaches for plant phylogenomic synteny analysis. Current opinion in plant biology, 36: 129-134.

Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome

Year 2025, Volume: 12 Issue: 3, 320 - 333, 31.10.2025
https://doi.org/10.19159/tutad.1769142

Abstract

COBL genes play an important role in the biosynthesis of cellulose, the main component of the cell wall. This study aimed to identify and characterize members of the COBL gene family that have not been characterized in the spinach genome. Eleven COBL members carrying the COBRA and/or COBL domains were found in the spinach genome. Among the So-COBL proteins, So-COBL1 and So-COBL2 are unstable. All So-COBL proteins are hydrophilic and, with aliphatic indices below 100, are not heat-stable. Both tandem and segmental duplications have occurred during the evolution of So-COBL genes. Because the Ka/Ks ratio is less than one, they have been subjected to purifying selection throughout evolution, eliminating deleterious variants. So-COBL genes contain cis elements in their promoter region that respond to many environmental stimuli, particularly hormone and light responses. Phylogeny analysis of spinach, Arabidopsis, and quinoa COBL genes revealed two groups, COBRA and COBL7-like. The intron-exon organization, motif, and domain structure of the genes grouped in the same group are similar. Synteny analysis revealed further orthology between quinoa and spinach. This study highlights the importance of COBL genes for future studies.

References

  • Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., 2015. The MEME suite. Nucleic Acids Research, 43(W1): W39-W49.
  • Ben‐Tov, D., Idan‐Molakandov, A., Hugger, A., Ben‐Shlush, I., Günl, M., Yang, B., Harpaz‐Saad, S., 2018. The role of COBRA‐LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. The Plant Journal, 94(3): 497-512.
  • Blum, M., Andreeva, A., Florentino, L.C., Chuguransky, S.R., Grego, T., Hobbs, E., Bateman, A., 2025. InterPro: The protein sequence classification resource in 2025<? mode longmeta?>. Nucleic Acids Research, 53(D1): D444-D456.
  • Borner, G.H., Lilley, K.S., Stevens, T.J., Dupree, P., 2003. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis: A proteomic and genomic analysis. Plant Physiology, 132(2): 568-577.
  • Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A., Benfey, P.N., 2007. Combining expression and comparative evolutionary analysis: The COBRA gene family. Plant Physiology, 143(1): 172-187.
  • Brinkjost, T., Ehrt, C., Koch, O., Mutzel, P., 2020. SCOT: Rethinking the classification of secondary structure elements. Bioinformatics, 36(8): 2417-2428.
  • Brown, D.M., Zeef, L.A., Ellis, J., Goodacre, R., Turner, S.R., 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell, 17(8): 2281-2295.
  • Cao, Y., Tang, X., Giovannoni, J., Xiao, F., Liu, Y., 2012. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biology, 12(1): 211.
  • Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Xia, R., 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11): 1733-1742.
  • Combet, C., Blanchet, C., Geourjon, C., Deleage, G., 2000. NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25(3): 147-150.
  • Cosgrove, D.J., 2016. Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany, 67(2): 463-476.
  • Dai, X., You, C., Wang, L., Chen, G., Zhang, Q., Wu, C., 2009. Molecular characterization, expression pattern, and function analysis of the OsBC1L family in rice. Plant Molecular Biology, 71(4): 469.
  • Dauda, A., Abbaya, H.Y., Abare, E.A., James, A.K., 2017. Insilico analysis of mycobacterium caprae protein sequence. Journal Animal Production Research, 29(1): 128-135.
  • Gamage, D.G., Gunaratne, A., Periyannan, G.R., Russell, T.G., 2019. Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letters, 26(5): 339-347.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.E., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server. In: J.M. Walker (Eds.), The Proteomics Protocols Handbook, Springer Protocols Handbooks, Humana Press, Totowa, pp. 571-607.
  • Geourjon, C., Deleage, G., 1995. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6): 681-684.
  • Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Rokhsar, D.S., 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1): D1178-D1186.
  • Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307-321.
  • Guruprasad, K., Reddy, B.B., Pandit, M.W., 1990. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2): 155-161.
  • Handakumbura, P.P., Hazen, S.P., 2012. Transcriptional regulation of grass secondary cell wall biosynthesis: playing catch-up with Arabidopsis thaliana. Frontiers in Plant Science, 3: 74.
  • Hassler, M., 2021. World Plants: Synonymic Checklists of the Vascular Plants of the World (Version 2021-03-17). Species 2000 & ITIS Catalogue of Life. (https://www.catalogueoflife.org/annual-checklist/2018).
  • Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33(6): 1635-1638.
  • Hulse‐Kemp, A.M., Bostan, H., Chen, S., Ashrafi, H., Stoffel, K., Sanseverino, W., Van Deynze, A., 2021. An anchored chromosome‐scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. The Plant Genome, 14(2): e20101.
  • Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm, T.J.A., Tester, M., 2017. The genome of Chenopodium quinoa. Nature, 542(7641): 307-312.
  • Khrustalev, V.V., Khrustaleva, T.A., Barkovsky, E.V., 2013. Random coil structures in bacterial proteins. Relationships of their amino acid compositions to flanking structures and corresponding genic base compositions. Biochimie, 95(9): 1745-1754.
  • Korkuć, P., Schippers, J.H., Walther, D., 2014. Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information. Plant Physiology, 164(1): 181-200.
  • Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Huala, E., 2011. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 40(D1): D1202-D1210.
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., van de Peer, Y., Rombauts, S., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327.
  • Letunic I., Bork P., 2011. Interactive tree of life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 39: W475-W478.
  • Li, S., Ge, F.R., Xu, M., Zhao, X.Y., Huang, G.Q., Zhou, L.Z., Zhang, Y., 2013. Arabidopsis COBRA‐LIKE 10, a GPI‐anchored protein, mediates directional growth of pollen tubes. The Plant Journal, 74(3): 486-497.
  • Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Li, J., 2003. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. The Plant Cell, 15(9): 2020-2031.
  • Liu, D., Hunt, M., Tsai, I.J., 2018. Inferring synteny between genome assemblies: A systematic evaluation. BMC Bioinformatics, 19(1): 26.
  • Liu, J., Wu, J., Silaiyiman, S., Ouyang, L., Cao, Z., Shen, C., 2025. Comparative genomics reveals gene duplication and evolution in 26 Aurantioideae species. Horticulturae, 11(2): 209.
  • Liu, L., Shang-Guan, K., Zhang, B., Liu, X., Yan, M., Zhang, L., Zhou, Y., 2013. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS genetics, 9(8): e1003704.
  • MacMillan, C.P., Mansfield, S.D., Stachurski, Z.H., Evans, R., Southerton, S.G., 2010. Fasciclin‐like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal, 62(4): 689-703.
  • Maughan, P.J., Bonifacio, A., Coleman, C.E., Jellen, E.N., Stevens, M.R., Fairbanks, D.J., 2007. Quinoa (Chenopodium quinoa). In: C. Kole (Eds.), Pulses, Sugar and Tuber Crops, Genome Mapping and Molecular Breeding in Plants, Vol 3, Springer, Berlin, Heidelberg, pp. 147-158.
  • Morelock, T.E., Correll, J.C. 2008. Spinach. In: J. Prohens and F. Nuez (Eds.), Handbook of Plant Breeding, Vegetables I.: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae, Springer, New York, NY, pp. 189-218.
  • Niu, E., Shang, X., Cheng, C., Bao, J., Zeng, Y., Cai, C., Guo, W., 2015. Comprehensive analysis of the COBRA-like (COBL) gene family in gossypium identifies two COBL s potentially associated with fiber quality. PloS One, 10(12): e0145725.
  • Peters, J., Jin, C., Luczak, A., Lyons, B., Kalyanaraman, R., 2025. Machine learning enabled protein secondary structure characterization using drop-coating deposition Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 259: 116762.
  • Ramaiyan, B., Kour, J., Nayik, G.A., Anand, N., Alam, M.S., 2020. Spinach (Spinacia oleracea L.). In: G.A. Nayik and A. Gull (Eds.), Antioxidants in Vegetables and Nuts - Properties and Health Benefits, Springer, Singapore, pp. 159-173.
  • Rao, J., Huang, Z., Chen, Z., Liu, H., Zhang, X., Cen, X., Ren, Y., 2023. Identification and expression profiles of xylogen-like arabinogalactan protein (XYLP) gene family in Phyllostachys edulis in different developmental tissues and under various abiotic stresses. International Journal of Biological Macromolecules, 227: 1098-1118.
  • Ren, P., Ma, L., Bao, W., Wang, J., 2024. Genome-wide ıdentification and hormone response analysis of the cobl gene family in barley. Genes, 15(5): 612.
  • Roudier, F., Fernandez, A.G., Fujita, M., Himmelspach, R., Borner, G.H., Schindelman, G., Benfey, P.N., 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. The Plant Cell, 17(6): 1749-1763.
  • Roudier, F., Schindelman, G., DeSalle, R., Benfey, P.N., 2002. The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiology, 130(2): 538-548.
  • Sajjad, M., Ahmad, A., Riaz, M.W., Hussain, Q., Yasir, M., Lu, M.Z., 2023. Recent genome resequencing paraded COBRA-Like gene family roles in abiotic stress and wood formation in Poplar. Frontiers in Plant Science, 14: 1242836.
  • Sangi, S., Araújo, P.M., Coelho, F.S., Gazara, R.K., Almeida-Silva, F., Venancio, T.M., Grativol, C., 2021. Genome-wide analysis of the cobra-like gene family supports gene expansion through whole-genome duplication in soybean (Glycine max). Plants, 10(1): 167.
  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Von Mering, C., 2023. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1): D638-D646.
  • Urry, D.W., 2004. The change in Gibbs free energy for hydrophobic association: Derivation and evaluation by means of inverse temperature transitions. Chemical Physics Letters, 399(1-3): 177-183.
  • Vaahtera, L., Schulz, J., Hamann, T., 2019. Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants, 5(9): 924-932.
  • Wallin, E., Heijne, G.V., 1998. Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 7(4): 1029-1038.
  • Wang, J., Chitsaz, F., Derbyshire, M.K., Gonzales, N.R., Gwadz, M., Lu, S., Marchler-Bauer, A., 2023. The conserved domain database in 2023. Nucleic Acids Research, 51(D1): D384-D388.
  • Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Paterson, A.H., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7): e49-e49.
  • Wright, P.E., Dyson, H.J., 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nature reviews Molecular Cell Biology, 16(1): 18-29.
  • Yang, Q., Wang, S., Chen, H., You, L., Liu, F., Liu, Z., 2021. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed (Brassica napus L.). PloS One, 16(11): e0260268.
  • Zaheer, M., Rehman, S.U., Khan, S.H., Shahid, S., Rasheed, A., Naz, R., Sajjad, M., 2022. Characterization of new COBRA like (COBL) genes in wheat (Triticum aestivum) and their expression analysis under drought stress. Molecular Biology Reports, 49(2): 1379-1387.
  • Zhang, Z., 2022. KaKs_Calculator 3.0: Calculating selective pressure on coding and non-coding sequences. Genomics, Proteomics and Bioinformatics, 20(3): 536-540.
  • Zhao, T., Schranz, M.E., 2017. Network approaches for plant phylogenomic synteny analysis. Current opinion in plant biology, 36: 129-134.
There are 57 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Article
Authors

Ayşe Gül Kasapoğlu 0000-0002-6447-4921

Publication Date October 31, 2025
Submission Date August 20, 2025
Acceptance Date October 29, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Kasapoğlu, A. G. (2025). Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome. Türkiye Tarımsal Araştırmalar Dergisi, 12(3), 320-333. https://doi.org/10.19159/tutad.1769142
AMA Kasapoğlu AG. Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome. Türkiye Tarımsal Araştırmalar Dergisi. October 2025;12(3):320-333. doi:10.19159/tutad.1769142
Chicago Kasapoğlu, Ayşe Gül. “Identification and Characterization of the COBRA-Like Gene Family in the Spinacia Oleracea L. Genome”. Türkiye Tarımsal Araştırmalar Dergisi 12, no. 3 (October 2025): 320-33. https://doi.org/10.19159/tutad.1769142.
EndNote Kasapoğlu AG (October 1, 2025) Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome. Türkiye Tarımsal Araştırmalar Dergisi 12 3 320–333.
IEEE A. G. Kasapoğlu, “Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome”, Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 3, pp. 320–333, 2025, doi: 10.19159/tutad.1769142.
ISNAD Kasapoğlu, Ayşe Gül. “Identification and Characterization of the COBRA-Like Gene Family in the Spinacia Oleracea L. Genome”. Türkiye Tarımsal Araştırmalar Dergisi 12/3 (October2025), 320-333. https://doi.org/10.19159/tutad.1769142.
JAMA Kasapoğlu AG. Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome. Türkiye Tarımsal Araştırmalar Dergisi. 2025;12:320–333.
MLA Kasapoğlu, Ayşe Gül. “Identification and Characterization of the COBRA-Like Gene Family in the Spinacia Oleracea L. Genome”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 12, no. 3, 2025, pp. 320-33, doi:10.19159/tutad.1769142.
Vancouver Kasapoğlu AG. Identification and Characterization of the COBRA-Like Gene Family in the Spinacia oleracea L. Genome. Türkiye Tarımsal Araştırmalar Dergisi. 2025;12(3):320-33.