BibTex RIS Cite

ANALYSIS OF TWO-DIMENSIONAL NON-LINEAR BURGERS' EQUATIONS

Year 2019, Volume: 9 Issue: 1, 38 - 48, 01.03.2019

Abstract

In this paper,we prove the existence, uniqueness and continuously of solution of two-dimensional Burgers' equations by iteration method.

References

  • Hill GW., (1886), On the part of the motion of the lunar perigee which is a function ofthe mean motions of the sun and moon, Acta Mathematica , 8: 1-36.
  • Bahadır A.R.,(2015), A fully implicit finite -difference scheme for two-diensional Burgers’ equations, Appl.Math. Comput. 206, 131-137.
  • Jain P.C, Holla D.N., (1978), Numerical solution of coupled Burgers’ equations, Int.J.Numer. Meth. Eng. 12, 213-222.
  • Wubs,F.W, E.D. de Goede, (1992), An explicit-implicit method for a class of time dependent partial differential equations, Appl.Numer.Math. 9 ,157-181.
  • Smith G.D., (1985), Numerical Solutions of Partial Differential Equations Finite Difference Methods, Clarendon Press, Oxford.
  • Vessiof E., (1893), On a class of differential equations, Annaks Scientifiques de l’E cole Normale Superieure, vol.10, p.53.
  • Guldberg A., (1893), On differential equations posseing a fundamental system of integrals, Comptes Rendusde l’ Academie des Scinces, vol:116. p.964.
  • S.Lie, (1885), General studies on differential equations admitting finite contnuous grups, Matheman- tische Annolen , vol.25, no.1, pp.71-151, reprinted in Lie’s Collected Works, vol.6, 139-223.
  • S.Lie, (1893), On ordinary differential equations possesing fundamental systems of integrals, Comptes Rendusde l’ Academie des Scinces, vol.116, reprinted in Lie’s Collected Works , vol.4, 314-316.
  • Jones S.E. and Ames W.F., (1967), Nonlinear superposition, Journal of Mathematical Anaysis and Applications, 17, 484-487.
  • Saad, K.M., Atangana, A. and Baleanu, D., (2018), New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 6 : 063109.
Year 2019, Volume: 9 Issue: 1, 38 - 48, 01.03.2019

Abstract

References

  • Hill GW., (1886), On the part of the motion of the lunar perigee which is a function ofthe mean motions of the sun and moon, Acta Mathematica , 8: 1-36.
  • Bahadır A.R.,(2015), A fully implicit finite -difference scheme for two-diensional Burgers’ equations, Appl.Math. Comput. 206, 131-137.
  • Jain P.C, Holla D.N., (1978), Numerical solution of coupled Burgers’ equations, Int.J.Numer. Meth. Eng. 12, 213-222.
  • Wubs,F.W, E.D. de Goede, (1992), An explicit-implicit method for a class of time dependent partial differential equations, Appl.Numer.Math. 9 ,157-181.
  • Smith G.D., (1985), Numerical Solutions of Partial Differential Equations Finite Difference Methods, Clarendon Press, Oxford.
  • Vessiof E., (1893), On a class of differential equations, Annaks Scientifiques de l’E cole Normale Superieure, vol.10, p.53.
  • Guldberg A., (1893), On differential equations posseing a fundamental system of integrals, Comptes Rendusde l’ Academie des Scinces, vol:116. p.964.
  • S.Lie, (1885), General studies on differential equations admitting finite contnuous grups, Matheman- tische Annolen , vol.25, no.1, pp.71-151, reprinted in Lie’s Collected Works, vol.6, 139-223.
  • S.Lie, (1893), On ordinary differential equations possesing fundamental systems of integrals, Comptes Rendusde l’ Academie des Scinces, vol.116, reprinted in Lie’s Collected Works , vol.4, 314-316.
  • Jones S.E. and Ames W.F., (1967), Nonlinear superposition, Journal of Mathematical Anaysis and Applications, 17, 484-487.
  • Saad, K.M., Atangana, A. and Baleanu, D., (2018), New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 6 : 063109.
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İrem Bağlan This is me

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite