BibTex RIS Cite

ON TOTAL VERTEX-EDGE DOMINATION

Year 2019, Volume: 9 Issue: 1, 0 - 2, 01.03.2019

Abstract

In this paper we obtain an improved upper bound of total vertex edgem domination number of a tree. If T is a connected tree with order n, then γtve T ≤n with m = 6de and we characterize the trees attaining this upper bound. Furthermorevewe provide a characterization of trees T with γt T = γt T

References

  • [1] Boutrig, R. and Chellali, M., (in press), Total vertex-edge domination, International Journal of Computer Mathematics.
  • [2] Boutrig, R., Chellali, M., Haynes, T. W. and Hedetniemi, S. T., (2016), Vertex-edge domination in graphs, Aequationes Mathematicae, 90(2), pp. 355-366.
  • [3] Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in Graphs, Marcel Dekker, New York.
  • [4] Kang, C. X., (2014), Total domination value in graphs, Util. Math., 95, pp. 263-279.
  • [5] Krishnakumari, B., Venkatakrishnan, Y. B. and Krzywkowski, M., (2014), Bounds on the vertex-edge domination number, C.R. Acad. Sci. Paris, Ser. I 352, pp. 363-366.
  • [6] Krishnakumari B., Venkatakrishnan Y. B. and Krzywkowski, M., (2016), On trees with total domination number equal to edge-vertex domination number plus one, Proc. Indian Acad. Sci. (Math. Sci.), 126(2), pp. 153-157.
  • [7] Lewis, J. R., Hedetniemi, S. T., Haynes, T. W. and Fricke, G. H., (2010), Vertex-edge domination, Util. Math., 81, pp. 193213.
  • [8] Peters, J. W., (1986), Theoretical and algorithmic results on domination and connectivity, Ph.D. thesis, Clemson University.
Year 2019, Volume: 9 Issue: 1, 0 - 2, 01.03.2019

Abstract

References

  • [1] Boutrig, R. and Chellali, M., (in press), Total vertex-edge domination, International Journal of Computer Mathematics.
  • [2] Boutrig, R., Chellali, M., Haynes, T. W. and Hedetniemi, S. T., (2016), Vertex-edge domination in graphs, Aequationes Mathematicae, 90(2), pp. 355-366.
  • [3] Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in Graphs, Marcel Dekker, New York.
  • [4] Kang, C. X., (2014), Total domination value in graphs, Util. Math., 95, pp. 263-279.
  • [5] Krishnakumari, B., Venkatakrishnan, Y. B. and Krzywkowski, M., (2014), Bounds on the vertex-edge domination number, C.R. Acad. Sci. Paris, Ser. I 352, pp. 363-366.
  • [6] Krishnakumari B., Venkatakrishnan Y. B. and Krzywkowski, M., (2016), On trees with total domination number equal to edge-vertex domination number plus one, Proc. Indian Acad. Sci. (Math. Sci.), 126(2), pp. 153-157.
  • [7] Lewis, J. R., Hedetniemi, S. T., Haynes, T. W. and Fricke, G. H., (2010), Vertex-edge domination, Util. Math., 81, pp. 193213.
  • [8] Peters, J. W., (1986), Theoretical and algorithmic results on domination and connectivity, Ph.D. thesis, Clemson University.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

B. Şahin This is me

A. Şahin This is me

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite