Objective of this paper is to discuss about the properties of indenite and denite bigeometric integration. We also discuss about some applications of bigeometric integration.
[1] Bashirov A. E., Rıza M., (2011), On Complex multiplicative differentiation, TWMS J. App. Eng. Math. 1(1) 75-85.
[2] Bashirov A. E., Mısırlı E., Tandoˇgdu Y., Ozyapıcı A., (2011), On modeling with multiplicative differ- ¨ ential equations, Appl. Math. J. Chinese Uni. 26(4)425-438.
[3] Bashirov A. E., Kurpınar E. M., Ozyapici A., (2008), Multiplicative Calculus and its applications, J. ¨ Math. Anal. Appl. 337 p.36-48.
[4] Boruah K., Hazarika B., (2016), Application of geometric calculus in numerical analysis and difference sequence spaces, J. Math. Anal. Appl. doi:10.1016/j.jmaa.2016.12.066
[5] Boruah K., Hazarika B., (2016), Some basic properties of G-calculus and its applications in numerical analysis, arXiv:1607.07749v1.
[6] Boruah K., Hazarika B., (2016), G-calculus, ariXv:1608.08088v2.
[7] Boruah K., Hazarika B., Solution of bigeometric-differential equations by numerical methods, preprint.
[8] C¸ akmak A. F., Ba¸sar F., (2012), On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. Article ID 932734, p.12.
[9] C¸ akmak A. F., Ba¸sar F., (2014), Certain spaces of functions over the field of non-Newtonian complex numbers, Abstr. Appl. Anal., Article ID 236124, p.12.
[10] C¸ akmak A. F., Ba¸sar F., (2014), On line and double integrals in the non-Newtonian sense, AIP Conference Proceedings, 1611, p.415-423.
[11] C¸ akmak A. F., Ba¸sar F., (2014), Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. 6(1), p.27-37.
[12] Campbell D., Multiplicative Calculus and Student Projects, Department of Mathematical Sciences, United States Military Academy, West Point, NY,10996, USA.
[13] Coco M., Multiplicative Calculus, Lynchburg College.
[14] Grossman M., (1983), Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts.
[15] Grossman M., Katz R., (1972), Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts.
[16] Grossman J., Grossman J., Katz R., (1980), The First Systems of Weighted Differential and Integral Calculus, University of Michigan.
[17] Grossman J., (1981), Meta-Calculus: Differential and Integral, University of Michigan.
[18] Grossman J., Katz R., (1983), Averages, A new Approach, University of Michigan.
[19] Grossman M., (1979), The First Nonlinear System of Differential and Integral Calculus University of California.
[20] Kadak U., ”Ozl¨uk M., (2015), Generalized Runge-Kutta method with respect to non-Newtonian calculus, Abst. Appl. Anal., Article ID 594685, p.10
[21] C´ordova-Lepe F., (2006), The multiplicative derivative as a measure of elasticity in economics, TMAT Revista Latinoamericana de Ciencias e Ingener´ıria, 2(3), p.8.
[22] Spivey M. Z., A Product Calculus, University of Puget Sound, Tacoma, Washington 98416-1043.
[23] Stanley D., (1999), A multiplicative calculus, Primus IX 4, 310-326.
[24] Tekin S., Ba¸sar F., (2013), Certain sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal., Article ID 739319, doi: 10.1155/2013/ 739319.
[25] T¨urkmen C., Ba¸sar F., (2012), Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1 61(2) p.17-34.
[26] Uzer A., (2010), Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. 60, p.2725-2737.
Year 2018,
Volume: 8 Issue: 2, 374 - 385, 01.12.2018
[1] Bashirov A. E., Rıza M., (2011), On Complex multiplicative differentiation, TWMS J. App. Eng. Math. 1(1) 75-85.
[2] Bashirov A. E., Mısırlı E., Tandoˇgdu Y., Ozyapıcı A., (2011), On modeling with multiplicative differ- ¨ ential equations, Appl. Math. J. Chinese Uni. 26(4)425-438.
[3] Bashirov A. E., Kurpınar E. M., Ozyapici A., (2008), Multiplicative Calculus and its applications, J. ¨ Math. Anal. Appl. 337 p.36-48.
[4] Boruah K., Hazarika B., (2016), Application of geometric calculus in numerical analysis and difference sequence spaces, J. Math. Anal. Appl. doi:10.1016/j.jmaa.2016.12.066
[5] Boruah K., Hazarika B., (2016), Some basic properties of G-calculus and its applications in numerical analysis, arXiv:1607.07749v1.
[6] Boruah K., Hazarika B., (2016), G-calculus, ariXv:1608.08088v2.
[7] Boruah K., Hazarika B., Solution of bigeometric-differential equations by numerical methods, preprint.
[8] C¸ akmak A. F., Ba¸sar F., (2012), On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. Article ID 932734, p.12.
[9] C¸ akmak A. F., Ba¸sar F., (2014), Certain spaces of functions over the field of non-Newtonian complex numbers, Abstr. Appl. Anal., Article ID 236124, p.12.
[10] C¸ akmak A. F., Ba¸sar F., (2014), On line and double integrals in the non-Newtonian sense, AIP Conference Proceedings, 1611, p.415-423.
[11] C¸ akmak A. F., Ba¸sar F., (2014), Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. 6(1), p.27-37.
[12] Campbell D., Multiplicative Calculus and Student Projects, Department of Mathematical Sciences, United States Military Academy, West Point, NY,10996, USA.
[13] Coco M., Multiplicative Calculus, Lynchburg College.
[14] Grossman M., (1983), Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts.
[15] Grossman M., Katz R., (1972), Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts.
[16] Grossman J., Grossman J., Katz R., (1980), The First Systems of Weighted Differential and Integral Calculus, University of Michigan.
[17] Grossman J., (1981), Meta-Calculus: Differential and Integral, University of Michigan.
[18] Grossman J., Katz R., (1983), Averages, A new Approach, University of Michigan.
[19] Grossman M., (1979), The First Nonlinear System of Differential and Integral Calculus University of California.
[20] Kadak U., ”Ozl¨uk M., (2015), Generalized Runge-Kutta method with respect to non-Newtonian calculus, Abst. Appl. Anal., Article ID 594685, p.10
[21] C´ordova-Lepe F., (2006), The multiplicative derivative as a measure of elasticity in economics, TMAT Revista Latinoamericana de Ciencias e Ingener´ıria, 2(3), p.8.
[22] Spivey M. Z., A Product Calculus, University of Puget Sound, Tacoma, Washington 98416-1043.
[23] Stanley D., (1999), A multiplicative calculus, Primus IX 4, 310-326.
[24] Tekin S., Ba¸sar F., (2013), Certain sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal., Article ID 739319, doi: 10.1155/2013/ 739319.
[25] T¨urkmen C., Ba¸sar F., (2012), Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1 61(2) p.17-34.
[26] Uzer A., (2010), Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. 60, p.2725-2737.