BibTex RIS Cite

GENERALIZED HANKEL DETERMINANT FOR A GENERAL SUBCLASS OF UNIVALENT FUNCTIONS

Year 2018, Volume: 8 Issue: 1.1, 311 - 317, 01.09.2018

Abstract

Making use of the generalized Hankel determinant, in this work, we consider a general subclass of univalent functions. Moreover, upper bounds are obtained for a3

References

  • Bucur, R., Andrei, L. and Breaz, D., (2015), Coefficient bounds and Fekete–Szeg¨o problem for a class of analytic functions defined by using a new differential operator, Appl. Math. Sci., 9, pp. 1355 -1368.
  • Ding, S. S., Ling, Y.and Bao, G. J., (1995), Some properties of a class of analytic functions, J. Math. Anal. Appl., 195, pp. 71-81.
  • Fekete, M. and Szeg¨o, G., (1933), Eine Bemerkung ¨Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 2, pp. 85-89.
  • El-Ashwah, R. and Kanas, S., (2015), Fekete-Szeg¨o inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J., 55, pp. 679-688.
  • Kumar, S. S. and Kumar, V., (2014), On Fekete–Szeg¨o inequality for certain class of analytic functions, Acta Univ. Apulensis Math. Inform., 37, pp. 211-222.
  • Kowalczyk, B. and Lecko, A., (2015), Fekete–Szeg¨o problem for a certain subclass of close-to-convex functions, Bull. Malays. Math. Sci. Soc., 3, pp. 1393-1410.
  • Noonan, J. W. and Thomas, D. K., (1976), On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223, pp. 337–346.
  • Noor, K. I., (1983), Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et. Appl., 28, pp. 731-739.
  • Hayami, T. and Owa, S., (2009), Hankel determinant for p-valently starlike and convex functions of order α, General Math., 17, pp. 29-44.
  • Hayami, T. and Owa, S., (2010), Generalized Hankel determinant for certain classes, Int. Journal ofMath. Analysis, 4, pp. 2473-2585.
Year 2018, Volume: 8 Issue: 1.1, 311 - 317, 01.09.2018

Abstract

References

  • Bucur, R., Andrei, L. and Breaz, D., (2015), Coefficient bounds and Fekete–Szeg¨o problem for a class of analytic functions defined by using a new differential operator, Appl. Math. Sci., 9, pp. 1355 -1368.
  • Ding, S. S., Ling, Y.and Bao, G. J., (1995), Some properties of a class of analytic functions, J. Math. Anal. Appl., 195, pp. 71-81.
  • Fekete, M. and Szeg¨o, G., (1933), Eine Bemerkung ¨Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 2, pp. 85-89.
  • El-Ashwah, R. and Kanas, S., (2015), Fekete-Szeg¨o inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J., 55, pp. 679-688.
  • Kumar, S. S. and Kumar, V., (2014), On Fekete–Szeg¨o inequality for certain class of analytic functions, Acta Univ. Apulensis Math. Inform., 37, pp. 211-222.
  • Kowalczyk, B. and Lecko, A., (2015), Fekete–Szeg¨o problem for a certain subclass of close-to-convex functions, Bull. Malays. Math. Sci. Soc., 3, pp. 1393-1410.
  • Noonan, J. W. and Thomas, D. K., (1976), On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223, pp. 337–346.
  • Noor, K. I., (1983), Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et. Appl., 28, pp. 731-739.
  • Hayami, T. and Owa, S., (2009), Hankel determinant for p-valently starlike and convex functions of order α, General Math., 17, pp. 29-44.
  • Hayami, T. and Owa, S., (2010), Generalized Hankel determinant for certain classes, Int. Journal ofMath. Analysis, 4, pp. 2473-2585.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. Yalçın This is me

S. Owa This is me

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1.1

Cite