BibTex RIS Cite

ON TRANS-SASAKIAN MANIFOLD EQUIPPED WITH m-PROJECTIVE CURVATURE TENSOR

Year 2017, Volume: 7 Issue: 2, 282 - 290, 01.12.2017

Abstract

The work towards of the attending paper is to interpret the trans-Sasakian manifold equipped with m-projective curvature tensor and its various geometric proper- ties. First, we observe that m-projectively at trans-Sasakian manifold is Einstein. In order, we discussed m-projectively conservative and -m-projectively at trans-Sasakian manifold. Following, we found the sucient condition for quasi m-projectively at trans- Sasakian manifold to be m-projectively at. In the end, the m-projectively and -m- projectively symmetric trans-Sasakian manifolds are analyzed.

References

  • Blair,D.E., (1976), Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag.
  • Cartan,E., (1926), Sur une classes remarquable d’espaces de Riemann, Bull. Soc. Math. France, 54, pp.214-26.
  • Chaubey,S.K. and Ojha,R.H., (2010), On the m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp.52-60.
  • De,U.C. and Shaikh,A.A., (2009), Complex manifolds and contact manifolds, Narosa Publication, New Delhi, India.
  • Hicks,N.J., (1969), Notes on Differential Geometry, Affiliated East West Press Pvt. Ltd.
  • Ojha,R.H., (1975), A note on the mprojective curvature tensor, Indian J. Pure Appl. Math., 8 (12), pp.1531-1534.
  • Ojha,R.H., (1986), m-projectively flat Sasakian manifolds, Indian J. Pure Appl. Math., 17 (4), pp.1531-1534.
  • Oubina,J.A., (1985), New classes of almost contact metric structures, Publ. Math. Debrecen, 32, pp.21-38.
  • Pokhariyal,G.P. and Mishra,R.S., (1971), Curvature tensors and their relativistic significance-ii, Yoko- hama Math. J., 19, pp.97-103.
  • Prakash,A., Ahmad,M., and Srivastava,A., (2013), m-projective curvature tensors on a LP-Sasakian manifolds, IOSR J. Math., 6, pp.19-23.
  • Prasad,R. and Srivastava,V., (2013), Some results on trans-Sasakian manifolds, Math. Vesnik, 65, pp.346-352.
  • Singh,J.P., (2015), On the M -projective curvature tensor of Sasakian manifold, Sci. Vis., 15 (2), pp.76-79.
  • Takahashi,T., (1977), Sasakian φ-symmetric space, Tohoku Math. J., 29, pp.91-113.
  • Tamassy,L. and Binh,T.Q., (1989), On weakly symmetric and weakly projective symmetric Riemann- ian manifold, Colloquia Math. Soc., 50, pp.663-667.
  • Zengin,F.O., (2013), On m-projectively flat LP-Sasakian manifolds, Ukr. Math. J., 65, pp.1725-1732.
Year 2017, Volume: 7 Issue: 2, 282 - 290, 01.12.2017

Abstract

References

  • Blair,D.E., (1976), Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag.
  • Cartan,E., (1926), Sur une classes remarquable d’espaces de Riemann, Bull. Soc. Math. France, 54, pp.214-26.
  • Chaubey,S.K. and Ojha,R.H., (2010), On the m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp.52-60.
  • De,U.C. and Shaikh,A.A., (2009), Complex manifolds and contact manifolds, Narosa Publication, New Delhi, India.
  • Hicks,N.J., (1969), Notes on Differential Geometry, Affiliated East West Press Pvt. Ltd.
  • Ojha,R.H., (1975), A note on the mprojective curvature tensor, Indian J. Pure Appl. Math., 8 (12), pp.1531-1534.
  • Ojha,R.H., (1986), m-projectively flat Sasakian manifolds, Indian J. Pure Appl. Math., 17 (4), pp.1531-1534.
  • Oubina,J.A., (1985), New classes of almost contact metric structures, Publ. Math. Debrecen, 32, pp.21-38.
  • Pokhariyal,G.P. and Mishra,R.S., (1971), Curvature tensors and their relativistic significance-ii, Yoko- hama Math. J., 19, pp.97-103.
  • Prakash,A., Ahmad,M., and Srivastava,A., (2013), m-projective curvature tensors on a LP-Sasakian manifolds, IOSR J. Math., 6, pp.19-23.
  • Prasad,R. and Srivastava,V., (2013), Some results on trans-Sasakian manifolds, Math. Vesnik, 65, pp.346-352.
  • Singh,J.P., (2015), On the M -projective curvature tensor of Sasakian manifold, Sci. Vis., 15 (2), pp.76-79.
  • Takahashi,T., (1977), Sasakian φ-symmetric space, Tohoku Math. J., 29, pp.91-113.
  • Tamassy,L. and Binh,T.Q., (1989), On weakly symmetric and weakly projective symmetric Riemann- ian manifold, Colloquia Math. Soc., 50, pp.663-667.
  • Zengin,F.O., (2013), On m-projectively flat LP-Sasakian manifolds, Ukr. Math. J., 65, pp.1725-1732.
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

J. P. Jaiswal This is me

A. S. Yadav This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 7 Issue: 2

Cite